[1] |
许佳彬, 李翠霞. “规模效应”还是“拥挤效应”?——奶牛养殖产业集聚对环境效率的非线性影响研究[J]. 农业技术经济, 2023(10): 22-43.
|
[2] |
朱智杰. 规模化奶牛场粪便的无害化处理措施[J]. 畜牧兽医杂志, 2020, 39(1): 48-49.
|
[3] |
WANG N Y, HE Y, ZHAO K Q, et al. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review[J]. Journal of Environmental Management, 2024, 354: 120337. doi: 10.1016/j.jenvman.2024.120337
|
[4] |
KONG Y L, WANG G Y, CHEN W J, et al. Phytotoxicity of farm livestock manures in anoxic heap composting using the seed germination index as indicator[J]. Ecotoxicology and Environmental Safety, 2022, 247: 114251. doi: 10.1016/j.ecoenv.2022.114251
|
[5] |
周海宾, 丁京涛, 孟海波, 等. 中国畜禽粪污资源化利用技术应用调研与发展分析[J]. 农业工程学报, 2022, 38(9): 237-246.
|
[6] |
卢秉林, 王文丽, 李娟, 等. 牛粪与小麦秸秆混合高温堆肥的腐熟进程研究[J]. 环境污染与防治, 2010, 32(1): 30-34. doi: 10.3969/j.issn.1001-3865.2010.01.007
|
[7] |
GHANNEY P, YEBOAH S, ANNING D K, et al. Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure[J]. Fermentation-Basel, 2023, 9(6): 551. doi: 10.3390/fermentation9060551
|
[8] |
刘凯, 郁继华, 颉建明, 等. 不同配比的牛粪与玉米秸秆对高温堆肥的影响[J]. 甘肃农业大学学报, 2011, 46(1): 82-88.
|
[9] |
尹子铭, 杨燕, 唐若兰, 等. 秸秆对猪粪静态兼性堆肥无害化和腐熟度的影响[J]. 农业工程学报, 2023, 39(7): 218-226. doi: 10.11975/j.issn.1002-6819.202210143
|
[10] |
吴海程. 畜禽粪便堆沤肥碳氮减排与促腐调控技术应用[D]. 武汉: 华中农业大学, 2024.
|
[11] |
陈金海, 李艳丽, 王磊, 等. 两种基于芦苇秸秆还田的改良措施对崇明东滩围垦土壤理化性质和微生物呼吸的影响[J]. 农业环境科学学报, 2011, 30(2): 307-315.
|
[12] |
朱鹏程. 芦苇秸秆肥料化过程中微生物群落及其抗生素抗性基因动态规律研究[D]. 济南: 山东大学, 2022.
|
[13] |
农业农村部. 有机肥料: NY/T 525-2021[S]. 北京: 中国标准出版社, 2021.
|
[14] |
MA C, CHEN X Y, ZHENG G D, et al. Exploring the influence mechanisms of polystyrene-microplastics on sewage sludge composting[J]. Bioresource Technology, 2022, 362: 127798. doi: 10.1016/j.biortech.2022.127798
|
[15] |
王永江, 黄光群, 韩鲁佳, 等. 塑料和麦秸膨胀剂对猪粪好氧堆肥的影响试验[J]. 农业机械学报, 2013, 44(5): 158-163.
|
[16] |
SUN B, LI Y, SONG M, et al. Molecular characterization of the composition and transformation of dissolved organic matter during the semi-permeable membrane covered hyperthermophilic composting[J]. Journal of Hazardous Materials, 2022, 425: 127496. doi: 10.1016/j.jhazmat.2021.127496
|
[17] |
ZHAO X Y, WEI Y Q, FAN Y Y, et al. Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting[J]. Bioresource Technology, 2018, 267: 378-385. doi: 10.1016/j.biortech.2018.07.060
|
[18] |
赵越, 魏雨泉, 李洋, 等. 不同物料堆肥腐熟程度的紫外-可见光谱特性表征[J]. 光谱学与光谱分析, 2015, 35(4): 961-965.
|
[19] |
MARTIN A P S, MARHUENDA-EGEA F C, BUSTAMANTE M A, et al. Spectroscopy techniques for monitoring the composting process: A review[J]. Agronomy-Basel, 2023, 13(9): 2245. doi: 10.3390/agronomy13092245
|
[20] |
LI L Q, LIU Y, KONG Y L, et al. Relating bacterial dynamics and functions to greenhouse gas and odor emissions during anoxic heap composting of four kinds of livestock manure[J]. Journal of Environmental Management, 2023, 345: 118589. doi: 10.1016/j.jenvman.2023.118589
|
[21] |
YANG Y, CHEN W J, LIU G L, et al. Effects of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage[J]. Waste Management, 2023, 166: 104-114. doi: 10.1016/j.wasman.2023.04.034
|
[22] |
HE X S, XI B D, JIANG Y H, et al. Structural transformation study of water-extractable organic matter during the industrial composting of cattle manure[J]. Microchemical Journal, 2013, 106: 160-166. doi: 10.1016/j.microc.2012.06.004
|
[23] |
国家市场监督管理总局、中国国家标准化管理委员会. 畜禽粪便无害化处理技术规范: GB/T 36195-2018[S]. 北京: 中国标准出版社, 2018.
|
[24] |
罗娟, 孟海波, 张玉华, 等. 玉米秸秆添加对果蔬废弃物沼渣堆肥效果的影响[J]. 中国沼气, 2019, 37(4): 92-97.
|
[25] |
施童, 陈杰, 亓传仁, 等. 农林废弃物对厨余垃圾堆肥腐殖化的影响与微生物驱动机制[J]. 农业工程学报, 2023, 39(13): 191-201.
|
[26] |
江滔, SCHUCHARDT F, 李国学. 冬季堆肥中翻堆和覆盖对温室气体和氨气排放的影响[J]. 农业工程学报, 2011, 27(10): 212-217.
|
[27] |
中华人民共和国农业农村部. 畜禽粪便堆肥技术规范: NY/T 3442-2019[S]. 北京: 中国农业出版社, 2019.
|
[28] |
ZHANG L X, GAO X Z, LI Y M, et al. Optimization of free air space to regulate bacterial succession and functions for alleviating gaseous emissions during kitchen waste composting[J]. Bioresource Technology, 2023, 387: 129682. doi: 10.1016/j.biortech.2023.129682
|
[29] |
兴虹, 吴丽红, 许艳广, 等. 辅料比对厨余垃圾好氧堆肥理化特性变化影响研究[J]. 环境科学与管理, 2023, 48(7): 66-70.
|
[30] |
LIU Y, MA R A, TANG R L, et al. Effects of phosphate-containing additives and zeolite on maturity and heavy metal passivation during pig manure composting[J]. Science of the Total Environment, 2022, 836: 155727. doi: 10.1016/j.scitotenv.2022.155727
|
[31] |
GOU C L, WANG Y Q, ZHANG X Q, et al. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions[J]. Bioresource Technology, 2017, 243: 339-346. doi: 10.1016/j.biortech.2017.06.097
|
[32] |
王晓君, 温文霞, 潘松青, 等. 辅料比例对餐厨垃圾好氧堆肥及微生物特性的影响[J]. 环境工程学报, 2016, 10(6): 3215-3222.
|
[33] |
张凤, 任勇翔, 张海阳, 等. 投加方式和通风速率对脱水污泥堆肥效果的影响[J]. 环境工程学报, 2018, 12(8): 2372-2378.
|
[34] |
刘英杰, 李琬婷, 王海候, 等. 锯末添加量对餐厨废弃物生物干化效率和细菌群落的影响[J]. 农业工程学报, 2023, 39(15): 208-216.
|
[35] |
ZHAO X Y, XU K L, WANG J W, et al. Potential of biochar integrated manganese sulfate for promoting pig manure compost humification and its biological mechanism[J]. Bioresource Technology, 2022, 357: 127350. doi: 10.1016/j.biortech.2022.127350
|
[36] |
JINDO K, SONOKI T, MATSUMOTO K, et al. Influence of biochar addition on the humic substances of composting manures[J]. Waste Management, 2016, 49: 545-552. doi: 10.1016/j.wasman.2016.01.007
|
[37] |
林嘉聪, 韩卓雅, 王定美, 等. 不同覆盖对圣女果秸秆简化静态堆肥与腐殖化进程的影响[J]. 农业工程学报, 2024, 40(4): 273-283.
|
[38] |
BAI L, DENG Y, LI J, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology, 2020, 307: 122941. doi: 10.1016/j.biortech.2020.122941
|
[39] |
WU J, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191-199. doi: 10.1016/j.biortech.2016.12.031
|
[40] |
ZHANG L X, GAO X Z, SHI T, et al. Regulating aeration intensity to simultaneously improve humification and mitigate gaseous emissions in food waste digestate composting: Performance and bacterial dynamics[J]. Science of the Total Environment, 2023, 889: 164239. doi: 10.1016/j.scitotenv.2023.164239
|
[41] |
BIYADA S, MERZOUKI M, ELKARRACH K, et al. Spectroscopic characterization of organic matter transformation during composting of textile solid waste using UV-Visible spectroscopy, Infrared spectroscopy and X-ray diffraction (XRD)[J]. Microchemical Journal, 2020, 159: 105314. doi: 10.1016/j.microc.2020.105314
|
[42] |
ZHU N, ZHU Y Y, LIANG D, et al. Enhanced turnover of phenolic precursors by Gloeophyllum trabeum pretreatment promotes humic substance formation during co-composting of pig manure and wheat straw[J]. Journal of Cleaner Production, 2021, 315: 128211. doi: 10.1016/j.jclepro.2021.128211
|
[43] |
WANG K, LI W G, GONG X J, et al. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV-vis, GPC, FTIR and EEM[J]. International Biodeterioration & Biodegradation, 2013, 85: 617-623.
|
[44] |
CHEN Y, WANG Y Y, XU Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresource Technology, 2019, 293: 122075-122075. doi: 10.1016/j.biortech.2019.122075
|
[45] |
李柯蒙, 李洁月, 游少鸿, 等. 猪粪堆肥过程中腐殖酸电子转移机制及光谱演化特征[J]. 环境工程, 2022, 40(12): 79-88.
|
[46] |
XU J Q, JIANG Z W, Li M Q, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. Journal of Environmental Management, 2019, 243: 240-249.
|
[47] |
JIAO M N, YANG Z W, XU W Y, et al. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch[J]. Science of the Total Environment, 2024, 917: 170279. doi: 10.1016/j.scitotenv.2024.170279
|
[48] |
侯智斌, 谢益平, 曹长春, 等. 添加不同比例玉米生物炭的堆肥腐殖质光谱学表征[J]. 科学技术与工程, 2023, 23(26): 11459-11475.
|
[49] |
CHEN H Y, AWASTHI S K, LIU T, et al. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting[J]. Journal of Hazardous Materials, 2020, 389: 121908. doi: 10.1016/j.jhazmat.2019.121908
|
[50] |
RICH N, BHARTI A, KUMAR S. Effect of bulking agents and cow dung as inoculant on vegetable waste compost quality[J]. Bioresource Technology, 2017, 252: 83-90.
|
[51] |
WANG S G, ZENG Y. Ammonia emission mitigation in food waste composting: A review[J]. Bioresource Technology, 2018, 248: 13-19. doi: 10.1016/j.biortech.2017.07.050
|
[52] |
LIU H, AWASTHI M K, ZHANG Z Q, et al. Microbial dynamics and nitrogen retention during sheep manure composting employing peach shell biochar[J]. Bioresource Technology, 2023, 386: 129555. doi: 10.1016/j.biortech.2023.129555
|
[53] |
张晓旭, 张红玉, 李国学. 秸秆添加对厨余垃圾堆肥时H2S和NH3排放的影响[J]. 环境工程, 2015, 33(1): 100-104.
|
[54] |
刘尚斌, 郑祥洲, 王煌平, 等. 蝇蛆预处理及辅料添加对鸡粪堆肥氨挥发和温室气体排放的影响[J]. 农业环境科学学报, 2024, 43(5): 1151-1162.
|
[55] |
田野, 刘善江, 陈益山. 不同水分和物料配比条件下堆肥氨气排放量研究[J]. 中国土壤与肥料, 2019(5): 127-134.
|
[56] |
LI R H, WANG J J, ZHANG Z Q, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368. doi: 10.1016/j.biortech.2012.06.065
|
[57] |
FENG L, YU Q, ZHEN Q, et al. Change of nutrients and humus in the composting process using different livestock manures[J]. Applied Ecology and Environmental Research, 2019, 17(5): 11619-11628.
|
[58] |
WEI Y H, LIANG Z W, ZHANG Y. Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray[J]. Bioresource Technology, 2022, 343: 126136. doi: 10.1016/j.biortech.2021.126136
|