[1] LIU G Z, CAI B F, LI Q, et al. China's pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060[J]. Carbon Management, 2022, 13(1): 435-449. doi: 10.1080/17583004.2022.2117648
[2] 蔡博峰, 李琦, 张贤. 中国区域二氧化碳地质封存经济可行性研究—中国二氧化碳捕集利用与封存(CCUS)年度报告(2024)[R]. 北京: 生态环境部环境规划院, 2024.
[3] INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate change 2007-Mitigation of climate change: working group III contribution to the fourth assessment report of the IPCC[M]. Cambridge: Cambridge University Press. 2007.
[4] 张少鹏, 刘晓磊, 程光伟, 等. 海底碳封存环境地质灾害风险及监测技术研究[J]. 中国工程科学, 2023, 25(3): 122-130.
[5] MERLE S G, EMBLEY R W, JOHNSON H P, et al. Distribution of methane plumes on Cascadia margin and implications for the landward limit of methane hydrate stability[J]. Frontiers in Earth Science, 2021, 9: 531714. doi: 10.3389/feart.2021.531714
[6] BECKER K, DAVIS E E, HEESEMANN M, et al. A long-term geothermal observatory across subseafloor gas hydrates, IODP Hole U1364A, Cascadia Accretionary Prism[J]. Frontiers in Earth Science, 2020, 8: 568566. doi: 10.3389/feart.2020.568566
[7] WANG W, BA J, CARCIONE J M, et al. Wave properties of gas-hydrate bearing sediments based on poroelasticity[J]. Frontiers in Earth Science, 2021, 9: 640424. doi: 10.3389/feart.2021.640424
[8] LI XS, XU CG, ZHANG Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101
[9] LI Q, WU Z S, LI X C. Prediction of CO2 leakage during sequestration into marine sedimentary strata[J]. Energy Conversion and Management, 2009, 50(3): 503-509. doi: 10.1016/j.enconman.2008.11.011
[10] GAUTEPLASS J, ALMENNINGEN S, ERSLAND G. Storing CO2 as solid hydrate in shallow aquifers: Electrical resistivity measurements in hydrate-bearing sandstone[J]. E3S Web of Conferences, 2020, 146: 05002. doi: 10.1051/e3sconf/202014605002
[11] REN LL, JIANG M, WANG LB, et al. Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments[J]. Energy, 2020, 194: 116869. doi: 10.1016/j.energy.2019.116869
[12] LOCHB HLER T, BREEN S J, DETWILER R L, et al. Probabilistic electrical resistivity tomography of a CO2 sequestration analog[J]. Journal of Applied Geophysics, 2014, 107: 80-92. doi: 10.1016/j.jappgeo.2014.05.013
[13] CARRIGAN C R, YANG X, LABRECQUE D J, et al. Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs[J]. International Journal of Greenhouse Gas Control, 2013, 18: 401-408. doi: 10.1016/j.ijggc.2013.04.016
[14] MAILLET G M, RIZZO E, REVIL A, et al. High resolution electrical resistivity tomography (ERT) in a transition zone environment: Application for detailed internal architecture and infilling processes study of a Rhône River paleo-channel[J]. Marine Geophysical Researches, 2005, 26(2): 317-328.
[15] YANG X, LASSEN R. N, JENSEN K H, et al. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography[J]. International Journal of Greenhouse Gas Control, 2015, 42: 534-544. doi: 10.1016/j.ijggc.2015.09.005
[16] AUKEN E, DOETSCH J, FIANDACA G, et al. Imaging subsurface migration of dissolved CO2 in a shallow aquifer using 3-D time-lapse electrical resistivity tomography[J]. Journal of Applied Geophysics, 2014, 101: 31-41. doi: 10.1016/j.jappgeo.2013.11.011
[17] CARRIGAN C R, RAMIREZ A L, NEWMARK R L, et al. Application of ERT for tracking CO2 plume growth and movement at the SECARB Cranfield site[R]. Livermore, CA (United States): Lawrence Livermore National Lab, 2009.
[18] LIU X P, JIN Z J, BAI G P, et al. Formation and distribution characteristics of proterozoic-lower paleozoic marine giant oil and gas fields worldwide[J]. Petroleum Science, 2017, 14(2): 237-260. doi: 10.1007/s12182-017-0154-5
[19] LIU B, SYED W H, CHEN J, et al. Distinct BSRs and their implications for natural gas hydrate formation and distribution at the submarine Makran accretionary zone[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1871-1886. doi: 10.1007/s00343-021-0293-9
[20] CAI L, XIAO G, ZENG Z, et al. New insights into marine hydrocarbon geological conditions in the South Yellow Sea Basin: evidence from borehole CSDP-2[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1169-1187. doi: 10.1007/s00343-020-0068-8
[21] XU H. , ZHANG W. , WEI K. , et al. Ferroan dolomites in miocene sediments of the Xisha Islands and their genetic model[J]. Journal of Oceanology and Limnology, 2018, 36(1): 165-180.
[22] YU G, JIN H, KONG Q. Study on hydrate risk in the water drainage pipeline for offshore natural gas hydrate pilot production[J]. Frontiers in Earth Science, 2022, 9: 816873. doi: 10.3389/feart.2021.816873
[23] GUO Z, WANG X, JIAO J, et al. Rock physics model and seismic dispersion and attenuation in gas hydrate-bearing sediments[J]. Frontiers in Earth Science, 2021, 9: 641606. doi: 10.3389/feart.2021.641606
[24] WANG L, LIU H, WANG Z, et al. Reverse time migration of vertical cable seismic data to image hydrate-bearing sediments with high resolution[J]. Frontiers in Earth Science, 2021, 9: 751202. doi: 10.3389/feart.2021.751202
[25] STRACK K M. Future directions of electromagnetic methods for hydrocarbon applications[J]. Surveys in Geophysics, 2014, 35(1): 157-177. doi: 10.1007/s10712-013-9237-z
[26] ATTIAS E, AMALOKWU K, WATTS M, et al. Gas hydrate quantification at a pockmark offshore Norway from joint effective medium modelling of resistivity and seismic velocity[J]. Marine and Petroleum Geology, 2020, 113: 104151. doi: 10.1016/j.marpetgeo.2019.104151
[27] COOK A E, PAGANONI M, CLENNELL M B, et al. Physical properties and gas hydrate at a near-seafloor thrust fault, Hikurangi Margin, New Zealand[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088474. doi: 10.1029/2020GL088474
[28] HAROON A, SWIDINSKY A, HOELZ S, et al. Step-on versus step-off signals in time-domain controlled source electromagnetic methods using a grounded electric dipole[J]. Geophysical Prospecting, 2020, 68(9): 2825-2844. doi: 10.1111/1365-2478.13016
[29] LIU T, LIU X, ZHU T. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate[J]. Marine and Petroleum Geology, 2020, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036
[30] 陈玉凤,梁德青,吴能友. 南海神狐海域水合物对岩心电阻率的影响[J]. 石油地球物理勘探, 2018, 53(6): 1241-1246.
[31] ZHANG Q, YANG Z, HE T, et al. Growth pattern of dispersed methane hydrates in brine-saturated unconsolidated sediments via joint velocity and resistivity analysis[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104279. doi: 10.1016/j.jngse.2021.104279
[32] DUAN S, HOELZ S, DANNOWSKI A, et al. Study on gas hydrate targets in the danube paleo-delta with a dual polarization controlled-source electromagnetic system[J]. Marine and Petroleum Geology, 2021, 134: 105330.
[33] KEY K. Marine electromagnetic studies of seafloor resources and tectonics[J]. Surveys in Geophysics, 2012, 33(1): 135-167. doi: 10.1007/s10712-011-9139-x
[34] COLLETT T S, KUUSKRAA V A Hydrates contain vast store of world gas resources[J]. Oil and Gas Journal, 1998, 96(19): 90-95.
[35] COLLETT T S, LADD J. 19. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrically resistivity log data[C]// Texas A&M university, college station. Proceedings of the ocean drilling program, scientific results. TX, USA, 2000, 164.
[36] GUNDOGDU N Y, CANDANSAYAR M E. Three-dimensional regularized inversion of DC resistivity data with different stabilizing functionals[J]. Geophysics, 2018, 83(6): E399-E407. doi: 10.1190/geo2017-0558.1
[37] CANDANSAYAR M E Two-dimensional inversion of magnetotelluric data with consecutive use of conjugate gradient and least-squares solution with singular value decomposition algorithms[J]. Geophysical Prospecting, 2008, 56(1): 141-157.
[38] OLDENBURG D W, LI Y G. Inversion of induced polarization data[J]. Geophysics, 1994, 59(9): 1327-1341. doi: 10.1190/1.1443692
[39] 王彩程. 含天然气水合物多孔介质的复电阻率特性及饱和度计算模型研究[D]. 青岛: 中国石油大学, 2017.
[40] LEE M, COLLETT T. A method of shaly sand correction for estimating gas hydrate saturations using downhole electrical resistivity log data[R]. U. S. Geol. Survey 2006.
[41] LIU J, ZHANG J, MA F, et al. Estimation of seismic velocities and gas hydrate concentrations: a case study from the Shenhu area, northern South China Sea[J]. marine and Petroleum Geology, 2017, 88: 225-234. doi: 10.1016/j.marpetgeo.2017.08.014
[42] SCHWALENBERG K, GEHRMANN R A S, BIALAS J, et al. Analysis of marine controlled source electromagnetic data for the assessment of gas hydrates in the Danube deep-sea fan, Black Sea[J]. Marine and Petroleum Geology, 2020, 122: 104650. doi: 10.1016/j.marpetgeo.2020.104650
[43] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1942, 146: 54-61.
[44] PEARSON C F, HALLECK P M, MCGUIRE P L, et al. Natural-gas hydrate deposits-a review of insitu properties[J]. Journal of Physical Chemistry, 1983, 87(21): 4180-4185. doi: 10.1021/j100244a041