周建军,周桔,冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊,2014,29(3):315-320. ZHOU J J, ZHOU J, FENG R G. The current situation of soil heavy metal pollution in China and its control strategy[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3):315-320(in Chinese).
CHEN W, ZHANG J, ZHANG X, et al. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite[J]. Environmental Science and Pollution Research, 2016, 23(2):1460-1470.
林超峰,龚骏. 嗜中性微好氧铁氧化菌研究进展[J]. 生态学报,2012,32(18):5889-5899. LIN C F, GONG J. Recent progress in research on neutrophilic, microaerophilic iron(Ⅱ)-oxidizing bacteria[J]. Acta Ecologica Sinica, 2012, 32(18):5889-5899(in Chinese).
张萌,郑平,季军远. 厌氧铁氧化菌研究进展[J]. 应用生态学报,2013,24(8):2377-2382. ZHANG M, ZHENG P, JI J Y. Research advances on anaerobic ferrous-oxidizing microorganisms[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2377-2382(in Chinese).
EMERSON D, FLEMING E J, MCBETH J M. Iron-oxidizing bacteria:an environmental and genomic perspective[J]. Annual Review of Microbiology, 2010, 64(1):561-583.
KUCERA S, WOLFE R S. A selective enrichment method for Gallionella ferruginea[J]. Journal of Bacteriology, 1957, 74(3):344-349.
EMERSON D, MOYER C L. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J]. Applied & Environmental Microbiology, 1998, 63(12):4784-4792.
WIDDEL F, SCHNELL S, HEISING S, et al. Ferrous iron oxi-dation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362:834-835.
JIAO Y, KAPPLER A, CROAL L R, et al. Isolation and characterization of a genetically tractable photoautotrophic Fe(Ⅱ)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1[J]. Applied & Environmental Microbiology, 2005, 71(8):4487-4496.
POULAIN A J, NEWMAN D K. Rhodobacter capsulatus catalyzes light-dependent Fe(Ⅱ) oxidation under anaerobic conditions as a potential detoxification mechanism[J]. Applied & Environmental Microbiology, 2009, 75(21):6639-6646.
EHRENREICH A, WIDDEL F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic[J]. Applied & Environmental Microbiology, 1994, 60(12):427-483.
STRAUB K L, SCHONHUBER W A, BUCHHOLZCLEVEN B E E, et al. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling[J]. Geomicrobiology Journal, 2004, 21(6):371-378.
KAPPLER A, SCHINK B, NEWMAN D K. Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1[J]. Geobiology, 2006, 3(4):235-245.
WEBER K A, HEDRICK D B, PEACOCK A D, et al. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. Applied Microbiology & Biotechnology, 2009, 83(3):555-565.
ESTHER J, SUKLA L B, PRADHAN N, et al. Fe (Ⅲ) reduction strategies of dissimilatory iron reducing bacteria[J]. Korean Journal of Chemical Engineering, 2015, 32(1):1-14.
罗海林,汤佳,周普雄,等. 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志,2018,37(6):1620-1627. LUO H L, TANG J, ZHOU P X, et al. Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology, 2018, 37(6):1620-1627(in Chinese).
LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Advances in Microbial Physiology, 2004, 49(2):219.
CORNELL R M, SCHWERTMANN U. Surface chemistry and colloidal stability[M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2003.
LU X X, HUANGFU X L, MA J. Removal of trace mercury(Ⅱ) from aqueous solution by in situ formed Mn-Fe (hydr) oxides[J]. Journal of Hazardous Materials, 2014, 280:71-78.
KAPPLER A. Geomicrobiological cycling of iron[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1):85-108.
IWAHORI K, WATANABE J, TANI Y, et al. Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe(Ⅲ)-reducing microbial enrichment cultures[J]. Journal of Bioscience and Bioengineering, 2014, 117(3):333-335.
MAILLOT F, MORIN G, JUILLOT F, et al. Structure and reactivity of As(Ⅲ)-and As(Ⅴ)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France:Comparison with biotic and abiotic model compounds and implications for As remediation[J]. Geochimica Et Cosmochimica Acta, 2013, 104:310-329.
ONA-NGUEMA G, MORIN G, JUILLOT F, et al. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite[J]. Environmental Science & Technology, 2005, 39(23):9147-9155.
XIU W, YU X, GUO H, et al. Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(Ⅲ) minerals (Fh-Gt Bio-bi-minerals)[J]. Chemosphere, 2019, 225:755-764.
PEREZ J P H, FREEMAN H M, BROWN A P, et al. Direct visualization of arsenic binding on green rust sulfate[J]. Environmental Science & Technology, 2020, 54(6):3297-3305.
BECKER T, GORHAM N, SHIERS D W, et al. In situ imaging of Sulfobacillus thermosulfidooxidans on pyrite under conditions of variable pH using tapping mode atomic force microscopy[J]. Process Biochemistry, 2011, 46(4):966-976.
KUPKA D, LOVÁS M, ŠEPELÁK V. Deferrization of kaolinic sand by iron oxidizing and iron reducing bacteria[J]. Advanced Materials Research, 2007, 20/21:130-133.
LIAO Y, LIANG J, ZHOU L. Adsorptive removal of As(Ⅲ) by biogenic schwertmannite from simulated As-contaminated groundwater[J]. Chemosphere, 2011, 83(3):295-301.
MIOT J, BENZERARA K, OBST M, et al. Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria[J]. Applied and Environmental Microbiology, 2009, 75(17):5586-5591.
CHAN C S, FAKRA S C, EDWARDS D C, et al. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides[J]. Geochimica Et Cosmochimica Acta, 2009, 73(13):3807-3818.
CHAN C S, DE STASIO G, WELCH S A, et al. Microbial polysaccharides template assembly of nanocrystal fibers[J]. Science, 2004, 303(5664):1656-1658.
孙振亚,黄江波. 葡聚糖分子对氢氧化铁矿化结晶的调制作用[J]. 物理化学学报,2006,22(2):172-177. SUN Z Y, HUANG J B. Modulation of dextran molecules on the crystallization of ferric hydroxide[J]. Journal of Physical Chemistry, 2006, 22(2):172-177(in Chinese).
FRIERDICH A J, LUO Y, CATALANO J G. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization[J]. Geology, 2011, 39(11):1083-1086.
OUYANG B, LU X, LIU H, et al. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2014, 124:54-71.
LATTA D E, BACHMAN J E, SCHERER M M. Fe electron transfer and atom exchange in goethite:Influence of Al-substitution and anion sorption[J]. Environmental Science & Technology, 2012, 46(19):10614-10623.
HANSEL C M, BENNER S G, FENDORF S. Competing Fe(Ⅱ)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology, 2005, 39(18):7147.
FRIERDICH A J, CATALANO J G. Controls on Fe(Ⅱ)-activated trace element release from goethite and hematite[J]. Environmental Science & Technology, 2012, 46(3):1519-1526.
SMEATON C M, WALSHE G E, FRYER B J, et al. Reductive dissolution of Tl(Ⅰ)-jarosite by Shewanella putrefaciens:Providing new insights into Tl(Ⅰ) biogeochemistry[J]. Environmental Science & Technology, 2012, 46(20):11086-11094.
JONES E J P, NADEAU T, VOYTEK M A, et al. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals[J]. Journal of Geophysical Research, 2006, 111(G1):G01012.
ROSSO K M, YANINA S V, GORSKI C A, et al. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(Ⅱ)[J]. Environmental Science & Technology, 2010, 44(1):61-67.
HANDLER R M, BEARD B L, JOHNSON C M, et al. Atom exchange between aqueous Fe(Ⅱ) and goethite:An Fe isotope tracer study[J]. Environmental Science & Technology, 2009, 43(4):1102-1107.
LIU C, LI F, CHEN M, et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite[J]. Acta Chimica Sinica, 2017, 75(6):621.
DUTRIZAC J E, JAMBOR J L. The behaviour of arsenic during Jarosite precipitation:Arsenic precipitation at 97℃ from sulphate or chloride media[J]. Canadian Metallurgical Quarterly, 2014, 26(2):91-101.
JAMES J D, TOLEK T, TOHRU A, et al. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy[J]. Environmental Science & Technology, 2006, 40(5):1556-1565.
CHEN C, KUKKADAPU R K, LAZAREVA O, et al. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies[J]. Environmental Science & Technology, 2017, 51(14):7903-7912.
AEPPLI M, KAEGI R, KRETZSCHMAR R, et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite[J]. Environmental Science & Technology, 2019, 53(7):3568-3578.
HANSEL C M, BENNER S G, NEISS J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochimica Et Cosmochimica Acta, 2003, 67(16):2977-2992.
张蕊,陆现彩,刘欢,等. Shewanella oneidensis MR-1还原铁帽过程中的矿物相转变和重金属的释放[J]. 矿物岩石地球化学通报,2015, 34(2):316-322. ZHANG R, LU X C, LIU H, et al. Phase transition of minerals and release of heavy metals in the reduction process of iron cap by Shewanella oneidensis MR-1[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):316-322(in Chinese).
AHEMAD M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria:Paradigms and prospects[J]. Arabian Journal of Chemistry, 2019, 12(7):1365-1377.
LEE S, ROH Y, KOH D C. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments:A review[J]. Chemosphere, 2019, 220:86-97.
LIU S V, ZHOU J, ZHANG C, et al. Thermophilic Fe(Ⅲ)-reducing bacteria from the deep subsurface:The evolutionary implications[J]. Science, 1997, 277(5329):1106-1109.
ROH Y, GAO H, VALI H, et al. Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. strain PV-4[J]. Applied & Environmental Microbiology, 2006, 72(5):3236.
VEERAMANI H, SCHEINOST A C, MONSEGUE N, et al. Abiotic reductive immobilization of U(Ⅵ) by biogenic mackinawite[J]. Environmental Science & Technology, 2013, 47(5):2361-2369.
WIELINGA B, MIZUBA M M, HANSEL C M, et al. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria[J]. Environmental Science & Technology, 2001, 35(3):522-527.
PENG L, LIU Y, GAO S H, et al. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling[J]. Chemosphere, 2015, 139:334-339.
LAVERMAN A M, BLUM J S, SCHAEFER J K, et al. Growth of strain SES-3 with arsenate and other diverse electron acceptors[J]. Applied & Environmental Microbiology, 1995, 61(10):3556-3561.
CUMMINGS D E, CACCAVO F, FENDORF S, et al. Arsenic mobilization by the dissimilatory Fe(Ⅲ)-reducing bacterium Shewanella alga BrY[J]. Environmental Science & Technology, 1999, 33(5):723-729.
ISLAM F S, ANDREW G G, CHRISTOPHER B, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sedimentsents[J]. Nature, 2004, 430(6995):68-71.
HUQ M E, FAHAD S, SHAO Z, et al. Arsenic in a groundwater environment in Bangladesh:Occurrence and mobilization[J]. Journal of Environmental Management, 2020, 262:110318.
AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe(Ⅱ)-activated goethite (α-FeOOH)[J]. Environmental Science & Technology, 2010, 44(1):102-108.
汪明霞,王娟,司友斌. Shewanella oneidensis MR-1异化还原Fe(Ⅲ)介导的As(Ⅲ)氧化转化[J]. 中国环境科学,2014,34(9):2368-2373. WANG M X, WANG J, SI Y B. Shewanella oneidensis MR-1 dissimilation reduction Fe(Ⅲ)-mediated As(Ⅲ) oxidation and transformation[J]. China Environmental Science, 2014, 34(9):2368-2373(in Chinese).
XIU W, GUO H, LIU Q, et al. Arsenic removal and transformation by Pseudomonas sp. strain GE-1-induced ferrihydrite:Co-precipitation versus adsorption[J]. Water, Air, & Soil Pollution, 2015, 226(6):167.
ZHAO Z, JIA Y, XU L, et al. Adsorption and heterogeneous oxidation of As(Ⅲ) on ferrihydrite[J]. Water Research, 2011, 45(19):6496-6504.
OKIBE N, KOGA M, SASAKI K, et al. Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi[J]. Minerals Engineering, 2013, 48:126-134.
司友斌,孙林,王卉. Shewanella oneidensis MR-1对针铁矿的还原与汞的生物甲基化[J]. 环境科学,2015,36(6):2252-2258. SI Y B, SUN L, WANG H. Reduction of goethite and biomethylation of mercury by Shewanella oneidensis MR-1[J]. Environmental Science, 2015, 36(6):2252-2258(in Chinese).
SI Y, ZOU Y, LIU X, et al. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria[J]. Chemosphere, 2015, 122:206-212.
KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory Iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.
KATSOYIANNIS I A, ZOUBOULIS A I. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 2004, 38(1):17-26.
HOHMANN C, WINKLER E, MORIN G, et al. Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize As during Fe(Ⅲ) mineral precipitation[J]. Environmental Science & Technology, 2010, 44(1):94-101.
XIU W, GUO H, SHEN J, et al. Stimulation of Fe(Ⅱ) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. strain 2002[J]. Environmental Science & Technology, 2016, 50(12):6449-6458.
TUFANO K J, FENDORF S. Confounding impacts of iron reduction on arsenic retention[J]. Environmental Science & Technology, 2008, 42(13):4777-4783.
KOCAR B D, HERBEL M J, TUFANO K J, et al. Contrasting effects of dissimilatory iron(Ⅲ) and arsenic(Ⅴ) reduction on arsenic retention and transport[J]. Environmental Science & Technology, 2006, 40(21):6715-6721.
BENNETT W W, TEASDALE P R, PANTHER J G, et al. Investigating arsenic speciation and mobilization in sediments with DGT and DET:A mesocosm evaluation of oxic-anoxic transitions[J]. Environmental Science & Technology, 2012, 46(7):3981-3989.
WANG Y, LIU X, SI Y, et al. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria[J]. Chemical Engineering Journal, 2016, 295:29-38.
FAROOQ S H, CHANDRASEKHARAM D, BERNER Z, et al. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta[J]. Water Research, 2010, 44(19):5575-5588.
WANG X, CHEN X, YANG J, et al. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil[J]. Journal of Environmental Sciences, 2009, 21(11):1562-1568.
PEDERSEN H D, POSTMA D, JAKOBSEN R. Release of arsenic associated with the reduction and transformation of iron oxides[J]. Geochimica et Cosmochimica Act, 2006, 70(16):4116-4129.
WANG Y, MORIN G, ONA-NGUEMA G, et al. Arsenic(Ⅲ) and arsenic(Ⅴ) speciation during transformation of lepidocrocite to magnetite[J]. Environmental Science & Technology, 2014, 48(24):14282-14290.
DONG M F, FENG R W, WANG R G, et al. Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and As accumulation in rice plant tissues[J]. Plant and Soil, 2016, 404(1/2):75-83.
LI C, YI X, DANG Z, et al. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1[J]. Chemosphere, 2016, 144:2065-2072.
YUAN C, LIU T, LI F, et al. Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium[J]. Journal of Environmental Management, 2018, 217:747-753.
MUEHE E M, OBST M, HITCHCOCK A, et al. Fate of Cd during microbial Fe(Ⅲ) mineral reduction by a novel and Cd-tolerant Geobacter species[J]. Environmental Science & Technology, 2013, 47(24):14099-14109.
MARTINEZ R E, PEDERSEN K, FERRIS F G. Cadmium complexation by bacteriogenic iron oxides from a subterranean environment[J]. Journal of Colloid and Interface Science, 2004, 275(1):82-89.
MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247:125902.
CUMMINGS D E, FENDORF S, SINGH N, et al. Reduction of Cr(Ⅵ) under acidic conditions by the facultative Fe(Ⅲ)-reducing bacterium acidiphilium cryptum[J]. Environmental Science & Technology, 2007, 41(1):146-152.
MASAKI Y, HIRAJIMA T, SASAKI K, et al. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(Ⅲ)-reducing bacterium Acidocella aromatica strain PFBC[J]. Extremophiles, 2015, 19(2):495-503.
FINNERAN K T, ANDERSON R T, NEⅥN K P, et al. Potential for bioremediation of uranium-contaminated aquifers with microbial U(Ⅵ) reduction[J]. Journal of Soil Contamination, 2002, 11(3):339-357.
ANDERSON R T, VRIONIS H A, ORTIZBERNAD I, et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Applied Microbiology & Biotechnology, 2003, 69(10):5884-5891.
WILLIAMS K H, BARGAR J R, LLOYD J R, et al. Bioremediation of uranium-contaminated groundwater:a systems approach to subsurface biogeochemistry[J]. Current Opinion in Biotechnology, 2013, 24(3):489-497.
CHANG H, BUETTNER S W, SEAMAN J C, et al. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah river site under reducing conditions[J]. Environmental Science & Technology, 2014, 48(16):9270-9278.
LAKANIEMI A, DOUGLAS G B, KAKSONEN A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments[J]. Journal of Hazardous Materials, 2019, 371, 198-212.
BEHRENDS T, VAN CAPPELLEN P. Competition between enzymatic and abiotic reduction of uranium(Ⅵ) under iron reducing conditions[J]. Chemical Geology, 2005, 220(3):315-327.
WIATROWSKI H A, WARD P M, BARKAY T. Novel reduction of mercury(Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria[J]. Environmental Science & Technology, 2006, 40(21):6690-6696.
LU X, LIU Y, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem[J]. Environmental Science & Technology, 2016, 50(8):4366-4373.
SMEATON C M, FRYER B J, WEISENER C G. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite[J]. Environmental Science & Technology, 2009, 43(21):8086-8091.
TAO L, ZHU Z, LI F, et al. Fe(Ⅱ)/Cu(Ⅱ) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions[J]. Chemosphere, 2017, 187:43-51.
SUGIO T, FUJⅡ M, TAKEUCHI F, et al. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(7):1537-1544.
XIANG L, CHAN L C, WONG J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria[J]. Chemosphere, 2000, 41(1/2):283-287.
LACK J G, CHAUDHURI S K, KELLY S D, et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(Ⅱ)[J]. Applied Microbiology & Biotechnology, 2002, 68(6):2704-2710.
FABISCH M, BEULIG F, AKOB D M, et al. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations[J]. Frontiers in Microbiology, 2013, 4:390.
FABISCH M, FREYER G, JOHNSON C A, et al. Dominance of ‘Gallionella capsiferriformans’ and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge[J]. Geobiology, 2015, 14(1):331-340.
SALAS E C, BERELSON W M, HAMMOND D E, et al. The impact of bacterial strain on the products of dissimilatory iron reduction[J]. Geochimica Et Cosmochimica Acta, 2010, 74(2):574-583.
BURTON E D, HOCKMANN K, KARIMIAN N, et al. Antimony mobility in reducing environments:The effect of microbial iron(Ⅲ)-reduction and associated secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2019, 245:278-289.
BAE S, LEE W. Biotransformation of lepidocrocite in the presence of quinones and flavins[J]. Geochimica Et Cosmochimica Acta, 2013, 114:144-155.
O'LOUCHLIN E J, GORSKI C A, SCHERER M M, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products[J]. Environmental Science & Technology, 2010, 44(12):4570-4576.
SHENG A, LI X, ARAI Y, et al. Citrate controls Fe(Ⅱ)-catalyzed transformation of ferrihydrite by complexation of the labile Fe(Ⅲ) intermediate[J]. Environmental Science & Technology, 2020, 54(12):7309-7319.
LIU C X, GORBY Y A, ZACHARA J M, et al. Reduction kinetics of Fe(Ⅲ), Co(Ⅲ), U(Ⅵ), Cr(Ⅵ), and Tc(Ⅶ) in cultures of dissimilatory metal-reducing bacteria[J]. Biotechnology and Bioengineering, 2002, 80(6):637-649.