SCHRAND A M, RAHMAN M F, HUSSAIN S M, et al. Metal-based nanoparticles and their toxicity assessment[J]. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2010, 2(5):544-568.
|
KAMAT P V, DIMITRIJEVI N M. Colloidal semiconductors as photocatalysts for solar energy conversion[J]. Solar Energy, 1990, 44(2):83-98.
|
张立德, 牟季美. 纳米材料学[M]. 沈阳:辽宁科学技术出版社, 1994. ZHANG L D, MOU J M. Nano materials science[M]. Shenyang:Liaoning Science and Technology Press, 1994(in Chinese).
|
彭红, 刘洋, 张锦胜, 等. 银纳米粒子材料应用研究进展[J]. 化工进展, 2017, 36(7):2525-2532.
PENG H, LIU Y, ZHANG J S, et al. Progress in utilization of silver nanoparticle material[J]. Chemical Industry and Engineering Progress, 2017, 36(7):2525-2532(in Chinese).
|
汪焕林, 王建宁, 张军. 纳米材料的应用[J]. 青海大学学报, 2002, 20(1):34-36.
WANG H, WANG J N, ZHANG J. Application of nanomaterials[J]. Journal of Qinghai University, 2002, 20(1):34-36(in Chinese).
|
PICCINNO F, GOTTSCHALK F, SEEGER S, et al. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world[J]. Journal of Nanoparticle Research, 2012, 14(9):1109-1117.
|
刘涛, 向垒, 余忠雄, 等. 水稻幼苗对纳米氧化铜的吸收及根系形态生理特征响应[J]. 中国环境科学, 2015, 35(5):1480-1486.
LIU T, XIANG L, YU Z X, et al. Responses of morphological and physiological characteristics in rice (Oryza sativa L.) seedling roots to its uptake of CuO nanoparticles[J]. Chinese Environmental Science, 2015, 35(5):1480-1486(in Chinese).
|
KTEEBA S M, EL-ADAWI H I, EL-RAYIS O A, et al. Zinc oxide nanoparticle toxicity in embryonic zebrafish:Mitigation with different natural organic matter[J]. Environmental Pollution, 2017, 230:1125-1140.
|
DALAI S, ISWARYA V, BHUVANESHWARI M, et al. Different modes of TiO2 uptake by Ceriodaphnia dubia:relevance to toxicity and bioaccumulation[J]. Aquatic Toxicology, 2014, 152(4):139-146.
|
JIANG C, CASTELLON B T, MATSON C W, et al. Relative contributions of copper oxide nanoparticles and dissolved copper to cu uptake kinetics of gulf killifish (Fundulus grandis) embryos[J]. Environmental Science & Technology, 2017, 51(3):1395-1404.
|
WANG Z, XIA B, CHEN B, et al. Trophic transfer of TiO2 nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity[J]. Environmental Science Nano, 2016, 4(2):415-424.
|
WANG Z, ZHANG L, ZHAO J, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter[J]. Environmental Science Nano, 2016, 3(2):240-255.
|
NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM):A critical review[J]. Analytical & Bioanalytical Chemistry, 2013, 405(1):109-124.
|
TEMMINGHOFF E J M, SJOERD E A T M. VAN D Z, et al. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter[J]. Environmental Science & Technology, 1997, 31(4):1109-1115.
|
凌婉婷, 徐建民, 高彦征, 等. 溶解性有机质对土壤中有机污染物环境行为的影响[J]. 应用生态学报, 2004, 15(2):326-330.
LING W T, XU J M, GAO Y Z, et al. Influence of dissolved organic matter (DOM)on environmental behaviors of organic pollutants in soils[J]. Journal of Applied Ecology, 2004, 15(2):326-330(in Chinese).
|
许中坚, 刘广深, 刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5):427-433.
XU Z G, LIU G S, LIU W P. Environmental characteristics and behavior of dissolved organic matter in soil[J]. Environmental Chemistry, 2003, 22(5):427-433(in Chinese).
|
REN M, HORN H, FRIMMEL F H. Aggregation behavior of TiO2 nanoparticles in municipal effluent:Influence of ionic strengthen and organic compounds[J]. Water Research, 2017, 123:678-686.
|
YU S, LIU J, YIN Y, et al. Interactions between engineered nanoparticles and dissolved organic matter:A review on mechanisms and environmental effects[J]. Journal of Environmental Sciences, 2018, 63(1):198-217.
|
GHOSH S, JIANG W, MCCLEMENTS J D, et al. Colloidal stability of magnetic iron oxide nanoparticles:Influence of natural organic matter and synthetic polyelectrolytes[J]. Langmuir, 2011, 27(13):8036-8043.
|
PHILIPPE A, SCHAUMANN G E. Interactions of dissolved organic matter with natural and engineered inorganic colloids:A review[J]. Environmental Science & Technology, 2014, 48(16):8946-8962.
|
JAYALATH S, WU H, LARSEN S C, et al. Surface adsorption of Suwannee river humic acid on TiO2 nanoparticles:A Study of pH and particle size[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2018, 34(9):3136-3145.
|
CHEN W, QIAN C, LIU X Y, et al. A two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanopaticles[J]. Environmental Science & Technology, 2014, 48(19):11119-11126.
|
YANG K, LIN D, XING B. Interactions of humic acid with nanosized inorganic oxides[J]. Langmuir, 2009, 25(6):3571-3576.
|
JOHNSON S B, YOON T H, KOCAR B D, et al. Adsorption of organic matter at mineral/water interfaces. 2. Outer-sphere adsorption of maleate and implications for dissolution processes[J]. Langmuir, 2004, 20(12):4996-5006.
|
郭金仓. 金属氧化物/水界面上NOM吸附机制的研究[D]. 武汉:武汉理工大学, 2009. GUO J C. Study on NOM adsorption mechanism on metal oxide/water surface[D].Wuhan:Wuhan University of Technology, 2009(in Chinese).
|
JOHNSON S B, YOON T H, SLOWEY A J, et al. Adsorption of organic matter at mineral/water interfaces:3. Implications of surface dissolution for adsorption of oxalate[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2004, 20(26):11480-11492.
|
胡慧萍, 王梦, 丁治英, 等. FT-IR、XPS和DFT研究水杨酸钠在针铁矿或赤铁矿上的吸附机理[J]. 物理化学学报, 2016, 32(8):2059-2068.
HU H P, WANG M, DING Z Y, et al. FT-IR, XPS and DFT study of the adsorption mechanism of sodium salicylate onto goethite or hematite[J]. Journal of Physical Chemistry, 2016, 32(8):2059-2068(in Chinese).
|
SUN D D, PEI F L. TiO2 microsphere for the removal of humic acid from water:Complex surface adsorption mechanisms[J]. Separation & Purification Technology, 2012, 91(19):30-37.
|
FAN J, LIU F, HU Y, et al. Effects of pH and ionic composition on sorption/desorption of natural organic matter on zero-valent iron and magnetite nanoparticles[J]. Water Science and Technology, 2015, 72(2):303-310.
|
姚晨曦, 杨春信, 周成龙. Langmuir吸附等温式推导浅析[J]. 化学与生物工程, 2018, 35(1):31-35.
YAO C X, YANG C X, ZHOU C L. Brief analysis of deduction of langmuir adsorption isotherm[J]. Chemical and Biological Engineering, 2018(1):31-35(in Chinese).
|
RAHMAN M S, WHALEN M, GAGNON G A. Adsorption of dissolved organic matter (DOM) onto the synthetic iron pipe corrosion scales (goethite and magnetite):Effect of pH[J]. Chemical Engineering Journal, 2013, 234(12):149-157.
|
郭惠莹, 梁妮, 周丹丹, 等. 天然有机质模型化合物在无机矿物表面的吸附[J]. 环境化学, 2017, 36(3):564-571.
GUO H Y, LIANG N, ZHOU D D, et al. Adsorption mechanisms of natural organic matter model compounds on inorganic minerals[J]. Environmental Chemistry, 2017, 36(3):564-571(in Chinese).
|
YANG K, XING B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase:Polanyi theory and its application[J]. Cheminform, 2010, 110(10):5989-6008.
|
YANG K, ZHU L, XING B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environmental Science & Technology, 2006, 40(6):1855-1861.
|
FRANCO C A, CORTéS F B, NASSAR N N. Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue[J]. Journal of Colloid & Interface Science, 2014, 425(7):168-177.
|
LI Z, LOWRY G V, FAN J, et al. High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite[J]. Science of the Total Environment, 2018, 628-629:177-185.
|
CHEKLI L, PHUNTSHO S, ROY M, et al. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter[J]. Science of the Total Environment, 2013, 461-462(7):19-27.
|
FENG L, HAN S K, WANG L S, et al. Sorption of phenylthioacetates on natural soil:Application of partition-adsorption mechanism and model[J]. Chemosphere, 1996, 33(11):2113-2120.
|
WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Asce Sanitary Engineering Division Journal, 1963, 1(2):1-2.
|
LI T, LIN D, LI L, et al. The kinetic and thermodynamic sorption and stabilization of multiwalled carbon nanotubes in natural organic matter surrogate solutions:The effect of surrogate molecular weight[J]. Environmental Pollution, 2014, 186:43-49.
|
ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter[J]. Science of the Total Environment, 2014, 468-469(4):249-257.
|
LI Z J, SHI B Y, WANG D S. Comparative study on adsorption behaviors of natural organic matter by powered activated carbons with different particle sizes[J]. Environmental Science, 2013, 34(11):4319-4324.
|
PETTIBONE J M, CWIERTNY D M, SCHERER M, et al. Adsorption of organic acids on TiO2 nanoparticles:Effects of pH, nanoparticle size, and nanoparticle aggregation[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24(13):6659-6667.
|
MATSUI Y, ANDO N, YOSHIDA T, et al. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon[J]. Water Research, 2011, 45(4):1720-1728.
|
曾凡凤. 天然无机纳米颗粒对有机污染物的吸附作用与机理[D].杭州:浙江大学, 2014. ZENG F F. Sorption behavior and mechanisms of organic contaminants by natural inorganic nanoparticles[D]. Hangzhou:Zhejiang University, 2014(in Chinese).
|
LIANG L, LUO L, ZHANG S. Adsorption and desorption of humic and fulvic acids on SiO2, particles at nano-and micro-scales[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2011, 384(1):126-130.
|
PENG Y H, TSAI Y C, HSIUNG C E, et al. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples[J]. Journal of Hazardous Materials, 2017, 322(Pt B):348-356.
|
吕继涛. 金属氧化物纳米颗粒在环境介质中的化学形态转化及植物吸收[D].北京:中国科学院生态环境研究中心, 2013. LV J T. Transformation and plant uptake of engineered metal oxide nanoparticles in the environment[D]. Beijing:Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, 2013(in Chinese).
|
LIU J, HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44(6):2169-2175.
|
WANG L F, HABIBUL N, HE D Q, et al. Copper release from copper nanoparticles in the presence of natural organic matter[J]. Water Research, 2015, 68(15):12-23.
|
JIANG C J, AIKEN G R, HSU-KIM H. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles[J]. Environmental Science & Technology, 2015, 49(19):11476-11484.
|
ZHANG W, YAO Y, SULLIVAN N, et al. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics[J]. Environmental Science & Technology, 2011, 45(10):4422-4428.
|