SHIHY H, CHOU H L, PENGY H, et al. Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether[J]. Bioresource Technology, 2012, 108:14-20.
ZHANG Z Z, XU J J, SHI Z J, et al. Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of anammox sludge[J].Bioresource Technology, 2017, 243(243):883-892.
ELJAMAL O, SASAKI K, TSURUYAMA S, et al. Kinetic model of arsenic sorption onto zero-valent iron (ZVI)[J]. Water Quality Exposure and Health, 2011, 2(3/4):125-132.
CHOE S, CHANG Y Y, HUANG K Y, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron[J]. Chemosphere, 2000, 41(8):1307-1311.
杨艺琳, 周孜迈, 邓文娜, 等. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3):598-607. YANG Y L, ZHOU Z M, DENG W N, et al. Removal of arsenic (Ⅴ) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3):598-607(in Chinese).
SHI L N, ZHANG X, CHEN Z L. Removal of chromium (Ⅵ) from wastewater using bentonite-supported nanoscale zero-valentiron[J]. Water Research, 2011, 45(2):886-892.
WANG F, GAO Y, SUN Q, et al. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction[J]. Chemical Engineering Journal, 2014, 255:55-62.
CAO Z, LIU X, XU J, et al. Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent Iron[J]. Environmental Science and Technology, 2017, 51(19):11269-11277.
智伟迪,涂耀仁,段艳平,等.有机改性蒙脱石负载纳米零价铁去除水体新兴污染物双氯芬酸[J]. 环境化学, 2020, 39(5):1225-1234. ZHI W D, TU Y R, DUAN Y P, et al. Organic modified montmorillonite with loaded nano zero-valent iron for removing emerging pollutant diclofenac[J]. Environmental Chemistry, 2020, 39(5):1225-1234(in Chinese).
连伟涛. PDA/NZVI@BC复合材料制备及其去除水中四环素的研究[D]. 昆明:昆明理工大学, 2018. LIAN W T. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[D]. Kunming:Kunming University of Science and Technology, 2018(in Chinese).
ZHAO L Z, ZHAO Y S, YANG B J, et al. Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(Ⅵ) in simulated groundwater[J]. Water, Air, and Soil Pollution, 2019, 230(6):1-14.
DAI Y, HU Y, JIANG B, et al. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction[J]. Journal of Hazardous Materials, 2016, 309:249-258.
WENG X, SUN Q, LIN S, et al. Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles[J]. Chemosphere, 2014, 103:80-85.
FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment:A review[J]. Journal of Hazardous Materials, 2014, 267:194-205.
FAN D, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science and Technology, 2016, 50(17):9558-9565.
LIU X S, XU H M, WANG L L, et al. Surface nano-traps of Fe0/COFs for arsenic(Ⅲ) depth removal from wastewater in non-ferrous smelting industry[J]. Chemical Engineering Journal, 2020, 381:122559.
KIM E J, KIM J H, CHANG Y S, et al. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles[J]. Environmental Science and Technology, 2014, 48(7):4002-4011.
RUIZ T, CLAUDIO A, ARAUJO M, et al. Preparation of air stable nanoscale zerovalent iron functionalized by ethylene glycol without inert condition[J]. Chemical Engineering Journal, 2018, 336:112-122.
HAN Y L, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles:Reactivity enhancement through sulfidation treatment[J]. Environmental Science and Technology, 2016, 50(23):12992-13001.
ZHOU Y, WANG T, ZHI D, et al. Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics:A review[J]. Journal of Materials Science, 2019, 54(19):12171-12188.
FAN D, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nanozerovalentiron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science and Technology, 2016, 50(17):9558-9565.
LOUY L,CAI Y C, TONG Y N, et al. Interaction between pollutants during the removal of polychlorinated biphenyl-heavy metal combined pollution by modified nanoscale zero-valent iron[J]. Science of the Total Environment, 2019, 673:120-127.
胡斌. 世界环氧树脂生产现状与发展趋势[J]. 国际化工信息, 2002(1):11-14. HU B. Current situation and development trend of epoxy resin production in the world[J]. Global Chemical Information, 2002 (1):11-14(in Chinese).
杨海明, 赵小彤, 安百钢, 等. 钯负载泡沫镍电极电化学还原水中三氯乙酸[J]. 化工环保, 2017, 37(4):404-408. YANG H M, ZHAO X T, AN B G, et al. Electrochemical reduction of acetocaustin in aqueous solution byPd-loaded nickel foam electrode[J]. Environmental Protection of Chemical Industry, 2017, 37(4):404-408(in Chinese).
赵玉丽, 李杏放. 饮用水消毒副产物:化学特征与毒性[J]. 环境化学, 2011, 30(1):20-33. ZHAO Y L, LI X F. Drinking water disinfection by-products:Chemical characterization and toxicity[J]. Environmental Chemistry, 2011, 30(1):20-33(in Chinese).
贾光辉, 董高钟. 氯化消毒副产物的控制研究进展[J]. 山西建筑, 2012, 38(20):203-205. JIA G H, DONG G Z. On research survey of control over chlorination disinfection by-products[J]. Shanxi Architecture, 2012, 38(20):203-205(in Chinese).
ZHU F, HE S Y, LIU T. Effect of pH, temperature and co-existing anions on the Removal of Cr(Ⅵ) in groundwater by green synthesized nZVI/Ni[J]. Ecotoxicology and Environmental Safety, 2018, 163:544-550.
HOZALSKIRM, ZHANG L, ARNOLD, et al. Reduction of haloacetic acids by Fe0:Implications for treatment and fate[J]. Environmental Science and Technology, 2001, 35(11):2258-2263.
BOPARAI H K, JOSEPH M, DENIS M. O'Carroll. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011, 186(1):458-465.
MAYO D W, MILLER F A, HANNAH R W, et al. In survey of infrared and raman group frequencies[M]. America:Wiley Interscience, 2004.