LEHMANN J, JOSPHE S. Biochar for environmental management:Science and technology[M]. London:Earthscan, 2009.
|
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333.
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture[J].Scientia Agricultura Sinica, 2013, 46(16):3324-3333(in Chinese).
|
徐振涛, 梁鹏, 吴胜春,等. 不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J]. 环境化学, 2019, 38(4):124-133.
XU Z T, LIANG P, WU S C, et al.[J]. Effects of different biochar on the a vailable mercury in soil and characterization of Hg adsorption[J]. Environmental Chemistry, 2019, 38(4):124-133(in Chinese).
|
陈灿,潘亚男, 王欣,等. 凤眼莲生物炭对稻田土壤肥力的影响[J]. 环境化学, 2017, 36(4):907-914.
CHEN C, PAN Y N, WANG X, et al.Influence of water hyacinth biochar on retention of nutrition in paddy soils[J]. Environmental Chemistry, 2017, 36(4):907-914(in Chinese).
|
MURRAY J, KEITH A, SINGH B. The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy[J]. Soil Biology and Biochemistry, 2015, 89:217-225.
|
刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009, 20(4):977-982.
LIU Y X, LIU W, WU W X, et al. Environmental behavior and effect of biomass-derived black carbon in soil:A review.[J]. Chinese Journal of Applied Ecology, 2009, 20(4):977-982(in Chinese).
|
CALVELO PEREIRA R, CAMPS ARBESTRAIN M, KAAL J,et al. Detailed carbon chemistry in charcoals from pre-europeanmāori gardens of new Zealand as a tool for understanding biochar stability in soils[J]. European Journal of Soil Science, 2014,65(1):83-95.
|
FANG Y, SINGH B P, NAZARIES L,et al. Interactive carbon priming, microbial response and biochar persistence in a vertisol with varied inputs of biochar and labile organic matter[J]. European Journal of Soil Science, 2019, 70:960-974.
|
HAEFELE S M, KONBOON Y, WONGBOON W,et al. Effects and fate of biochar from rice residues inrice-based systems[J]. Field Crops Research, 2011,121(3):430-440.
|
ALLER M F. Biochar properties:Transport, fate, and impact[J]. Critical Reviews in Environmental Science and Technology, 2016,46(14/15):1183-1296.
|
周丹丹, 吴文卫, 吴敏. 生物质炭的稳定性及其评价方法[J]. 重庆大学学报, 2015, 38(3):116-122.
ZHOU D D, WU W W, WU M. Stability of biochar and its evaluating methods[J]. Journal of Chongqing University, 2015, 38(3):116-122(in Chinese).
|
BRODOWSKI S, AMELUNG W, HAUMAIER L,et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1/2):116-129.
|
FANG Y, SINGH B, SINGH B P, et al. Biochar carbon stability in four contrasting soils[J]. European Journal of Soil Science, 2014, 65(1):60-71.
|
HAN L, SUN K, YANG Y,et al. Biochar's stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020,364:114184. DOI:10.1016/j.geoderma.2020.114184.
|
CHENG C, LEHMANN J, THIES J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488.
|
ZHU X, MAO L, CHEN B. Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil[J]. Environment International, 2019,133:105211. DOI:10.1016/j.envint.2019.105211.
|
ZIMMERMANN M, BIRD M I, WURSTER C, et al.Rapid degradation of pyrogenic carbon[J]. Global Change Biology, 2012, 18(11):3306-3316.
|
LIAN F, XING B. Black carbon (biochar) in water/soil environments:Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23):13517-13532.
|
MASK O, BROWNSORT P, CROSS A, et al. Influence of production conditions on the yield and environmental stability of biochar[J]. Fuel, 2013, 103:151-155.
|
BRUUN E W, HAUGGAARD-NIELSEN H, IBRAHIM N, et al. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil[J]. Biomass and Bioenergy, 2011, 35(3):1182-1189.
|
GRUTZMACHER P, PUGA A P, BIBAR M P S,et al. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar[J]. Science of the Total Environment, 2018, 625:1459-1466.
|
CHEN C, CHENG C, HUANG Y,et al. Converting leguminous green manure into biochar:changes in chemical composition and C and N mineralization[J]. Geoderma,2014,232/234:581-588.
|
POTTER M C. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London Series B, 1908, 539(80):239-259.
|
ZIMMERMAN A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301.
|
SANTOS F, TORN M S, BIRD J A. Biological degradation of pyrogenic organic matter in temperate forest soils[J]. Soil Biology and Biochemistry, 2012, 51:115-124.
|
KEITH A, SINGH B, SINGH B P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J]. Environmental Science & Technology, 2011, 45(22):9611-9618.
|
YIN Y, HE X, GAO R,et al. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon[J]. Journal of Integrative Agriculture, 2014, 13(3):491-498.
|
FARRELL M, KUHN T K, MACDONALD L M,et al. Microbial utilisation of biochar-derived carbon[J]. Science of the Total Environment, 2013, 465:288-297.
|
HAMER U, MARSCHNER B, BRODOWSKI S, et al. Interactive priming of black carbon and glucose mineralisation[J]. Organic Geochemistry, 2004, 35(7):823-830.
|
LUO Y, DURENKAMP M, De NOBILI M,et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry, 2011, 43(11):2304-2314.
|
KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil:Decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70:229-236.
|
KUZYAKOV Y, SOBBOTINA I, CHEN H,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2):210-219.
|
MARESTRINI B, HERRMANN A M, NANNIPIERI P,et al. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil[J]. Soil Biology and Biochemistry, 2014, 69:291-301.
|
SINGH B P, COWIE A L, SMERNIK R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21):11770-11778.
|
FANG Y, SINGH B, SINGH B P. Effect of temperature on biochar priming effects and its stability in soils[J]. Soil Biology and Biochemistry, 2015, 80:136-145.
|
HILSCHER A, HEISTER K, SIEWERT C,et al. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil[J]. Organic Geochemistry, 2009, 40(3):332-342.
|
LIANG B, LEHMANN J, SOLOMON D,etal. Stability of biomass-derived black carbon in soils[J]. Geochimica Et Cosmochimica Acta, 2008, 72(24):6069-6078.
|
MAJOR J, LEHMANN J, RONDON M, et al. Fate of soil-applied black carbon:Downward migration, leaching and soil respiration[J]. Global Change Biology, 2010, 16(4):1366-1379.
|
XU H, GUAN D, ZOU L,et al. Contrasting effects of photochemical and microbial degradation on Cu(Ⅱ) binding with fluorescent DOM from different origins[J]. Environmental Pollution, 2018, 239:205-214.
|
ZIMMERMAN A R, OUYANG L. Priming of pyrogenic C (biochar) mineralization by dissolved organic matter and vice versa[J]. Soil Biology and Biochemistry, 2019,130:105-112.
|
PURAKAYASTHA T J, DAS K C, GASKIN J,et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils[J]. Soil and Tillage Research, 2016, 155:107-115.
|
WANG J, XIONG Z, KUZYAKOV Y. Biochar stability in soil:Meta-analysis of decomposition and priming effects[J]. Global Change Biology Bioenergy, 2016, 8(3):512-523.
|
LENG L, XU X, WEI L,et al. Biochar stability assessment by incubation and modelling:Methods, drawbacks and recommendations[J]. Science of the Total Environment, 2019,664:11-23.
|
CHAO L, ZHANG W D, WANG S L. Understanding the dominant controls on biochar decomposition using boosted regression trees[J]. European Journal of Soil Science, 2018,69(3):512-520.
|
BAI M, WILSKE B, BUEGGER F,et al. Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils[J]. Plant and Soil, 2013,372(1/2):375-387.
|
MARCO G, CORA V, MIRJAM H,et al. Stability of pyrochar and hydrochar in agricultural soil-a new field incubation method[J]. Geoderma, 2016, 284:85-92.
|
BAMMINGER C, MARSCHNER B, JUSCHKE E. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils[J]. European Journal of Soil Science, 2014, 65(1):72-82.
|
LANZA G, STANG A, KERN J, et al. Degradability of raw and post-processed chars in a two-year field experiment[J]. Science of the Total Environment, 2018,628/629:1600-1608.
|
FEOLA CONZ R, ABBRUZZINI T F, DE ANDRADE C A, et al. Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars[J]. Agricultural Sciences, 2017,8(9):914-933.
|
ABNEY R B, JIN L, BERHE A A. Soil properties and combustion temperature:Controls on the decomposition rate of pyrogenic organic matter[J]. Catena, 2019,182:104127. DOI:10.1016/j.catena.2019.104127.
|
WHITMAN T, HANLEY K, ENDERS A, et al. Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management[J]. Organic Geochemistry, 2013,64:76-83.
|
LENG L, HUANG H. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018,270:627-642.
|
NGUYEN B T, LEHMANN J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009,40(8):846-853.
|
PURAKAYASTHA T J, KUMARI S, PATHAK H. Characterisation, stability, and microbial effects of four biochars produced from crop residues[J]. Geoderma, 2015, 239/240:293-303.
|
JINDO K, SONOKI T. Comparative assessment of biochar stability using multiple indicators[J]. Agronomy, 2019, 9(5):254. DOI:10.3390/agronomy9050254.
|
CHOUNHARY T K, KHAN K S, HUSSAIN Q, et al. Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes[J]. Arabian Journal of Geosciences, 2019, 12(19):617. DOI:10.1007/s12517-019-4735-z.
|
SIGUA G C, NOVAK J M, WATTS D W, et al. Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzedbiochar[J]. Chemosphere, 2014, 103:313-321.
|
LI F, CAO X, ZHAO L, et al. Effects of mineral additives on biochar formation:Carbon retention, stability, and properties[J]. Environmental Science & Technology, 2014,48(19):11211-11217.
|
ZHAO L, CAO X, ZHENG W, et al. Phosphorus-assisted biomass thermal conversion:Reducing carbon loss and improving biochar stability[J]. PLoS One, 2014, 9(12):e115373. DOI:10.1371/journal.pone.0115373.
|
NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science & Technology, 2010, 44(9):3324-3331.
|
BRUUN S, CLAUSON-KAAS S, BOBULSKA L, et al. Carbon dioxide emissions from biochar in soil:Role of clay, microorganisms and carbonates[J]. European Journal of Soil Science, 2014,65(1):52-59.
|
WOO S H, ENDERS A, LEHMANN J. Microbial mineralization of pyrogenic organic matter in different mineral systems[J]. Organic Geochemistry, 2016,98:18-26.
|
WU M, HAN X, ZHONG T, et al. Soil organic carbon content affects the stability of biochar in paddy soil[J]. Agriculture, Ecosystems & Environment, 2016, 223:59-66.
|
GIBSON C, HATTON P, BIRD J, et al. Interacting controls of pyrolysis temperature and plant taxa on the degradability of PyOM in fire-prone northern temperate forest soil[J]. Soil Systems, 2018,2(3):48. DOI:10.3390/soilsystems2030048.
|
ZAVALLONI C, ALBERTI G, BIASIOL S, et al. Microbial mineralization of biochar and wheat straw mixture in soil:A short-term study[J]. Applied Soil Ecology, 2011, 50:45-51.
|
CUI J, GE T, KUZYAKOV Y, et al. Interactions between biochar and litter priming:A three-source 14C and δ13C partitioning study[J]. Soil Biology and Biochemistry, 2017,104:49-58.
|
VENTURA M, ALBERTI G, VIGER M, et al. Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices[J]. Global Change Biology Bioenergy, 2015, 7(5):1150-1160.
|
VENTURA M, ALBERTI G, PANZACCHI P, et al. Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment[J]. Biology and Fertility of Soils, 2019, 55(1):67-78.
|
WU M, FENG Q, SUN X, et al. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil[J]. Scientific Reports, 2015,5(1):10001. DOI:10.1038/srep10001.
|
GURWICK N P, MOORE L A, KELLY C, et al. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy[J]. PLoS One, 2013, 8(9):e75932. DOI:10.1371/journal.pone.0075932.
|
AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms:Review and research needs[J]. European Journal of Soil Science, 2013, 64(4):379-390.
|
WARDLE D A, NILSSON M C, ZACKRISSON O. Fire-derived charcoal causes loss of forest humus[J]. Science, 2008, 320(5876):629-629.
|
BRODOWSKI S, JOHN B, FLESSA H, et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4):539-546.
|
SINGH N, ABIVEN S, MAESTRINI B, et al. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment[J]. Global Change Biology, 2014, 20(5):1629-1642.
|
TAN L, SUN C, WANG Y, et al. Changes in biochar properties in typical loess soil under a 5-year field experiment[J]. Journal of Soils and Sediments, 2020,20(1):340-351.
|
DONG X, LI G, LIN Q, et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena, 2017,159:136-143.
|
DELA ROSA J M, ROSADO M, PANEQUE M, et al. Effects of aging under field conditions on biochar structure and composition:Implications for biochar stability in soils[J]. Science of the Total Environment, 2018, 613/614:969-976.
|
SINGH B, FANG Y, COWIE B C C, et al. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars[J]. Organic Geochemistry, 2014,77:1-10.
|
RECHBERGER M V, KLOSS S, RENNHOFER H, et al. Changes in biochar physical and chemical properties:Accelerated biochar aging in an acidic soil[J]. Carbon, 2017, 115:209-219.
|
SORRENTI G, MASIELLO C A, DUGAN B, et al. Biocharphysico-chemical properties as affected by environmental exposure[J]. Science of the Total Environment, 2016,563/564:237-246.
|
DAS O, SARMAH A K. The love-hate relationship of pyrolysis biochar and water:A perspective[J]. Science of the Total Environment, 2015,512/513:682-685.
|
HEITKOTTER J, MARSCHNER B. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production[J]. Geoderma, 2015,245/246:56-64.
|
LI H, LU X, XU Y, et al. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 2019,352:96-103.
|
TAN Z, LIN C S K, JI X, et al. Returning biochar to fields:A review[J]. Applied Soil Ecology, 2017, 116:1-11.
|
BUDAI A, RASSE D P, LAGOMARSINO A, et al. Biochar persistence, priming and microbial responses to pyrolysis temperature series[J]. Biology and Fertility of Soils, 2016, 52(6):749-761.
|
DAI Z, BARBERAN A, LI Y, et al.Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment[J]. Msphere, 2017, 2(2):e00085-17. DOI:10.1128/mSphere.00085-17.
|
ZHANG L, JING Y, XIANG Y, et al. Responses of soil microbial community structure changes and activities to biochar addition:A meta-analysis[J]. Science of the Total Environment, 2018,643:926-935.
|
LI M, WANG Y, LIU M, et al. Three-year field observation of biochar-mediated changes in soil organic carbon and microbial activity[J]. Journal of Environmental Quality, 2019,48(3):717-726.
|
LANZA G, REBENSBURG P, KERN J, et al. Impact of chars and readily available carbon on soil microbial respiration and microbial community composition in a dynamic incubation experiment[J]. Soil and Tillage Research, 2016,164:18-24.
|
MENG C P, HANIF A H M, WAHID S A, et al. Short-term field decomposition and physico-chemical transformation of jatropha pod biochar in acidic mineral soil[J]. Open Journal of Soil Science, 2014, 4(7):226-234.
|
PITUELLO C, DAL FERRO N, FRANCIOSO O, et al. Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils[J]. European Journal of Soil Science, 2018,69(5):827-842.
|
KUMAR A, JOSEPH S, TSECHANSKY L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018,626:953-961.
|
SAFFARI N, HAJABBASI M A, SHIRANI H, et al. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability[J]. Journal of Environmental Management, 2020, 261:110190. DOI:10.1016/j.jenvman.2020.110190.
|
NGUYEN B T, LEHMANN J, KINYANGI J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009, 92(1/2):163-176.
|
EL-NAGGAR A, AWAD Y M, TANG X, et al. Biochar influences soil carbon pools and facilitates interactions with soil:A field investigation[J]. Land Degradation & Development, 2018, 29(7):2162-2171.
|
JIANG X, TAN X, CHENG J, et al. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations[J]. Geoderma, 2019, 333:99-107.
|
WANG D, FONTE S J, PARIKH S J, et al. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J]. Geoderma, 2017, 303:110-117.
|
MUKHERJEE A, ZIMMERMAN A R, HAMDAN R, et al. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging[J]. Solid Earth, 2014, 5(2):693-704.
|
VASILYEVA N A, ABIVEN S, MILANOVSKIY E Y, et al. Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem[J]. Soil Biology and Biochemistry, 2011, 43(9):1985-1988.
|
GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J].Organic Geochemistry, 2000, 31(7):669-678.
|
FERNANDEZ-UGALDE O, GARTZIA-BENGOETXEA N, AROSTEGI J, et al. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area[J]. Science of the Total Environment, 2017, 587/588:204-213.
|
LIN Y, MUNROE P, JOSEPH S, et al. Nanoscaleorgano-mineral reactions of biochars in ferrosol:An investigation using microscopy[J]. Plant and Soil, 2012, 357(1/2):369-380.
|
YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016, 50(5):2264-2271.
|
HILSCHER A, KNICKER H. Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28month microcosm experiment[J]. Organic Geochemistry, 2011,42(1):42-54.
|
KNICKER H. Pyrogenic organic matter in soil:Its origin and occurrence, its chemistry and survival in soil environments[J]. Quaternary International, 2011, 243(2):251-263.
|
CAO T, CHEN W, YANG T, et al. Surface characterization of aged biochar incubated in different types of soil[J]. BioResources, 2017,12(3):6366-6377.
|
JOSEPH S, GRABER E R, CHIA C, et al. Shifting paradigms:development of high-efficiency biochar fertilizers based on nano-structures and soluble components[J]. Carbon Management, 2014, 4(3):323-343.
|
朱华伟, 张延平, 李寅. 微生物电合成-电能驱动的CO2固定[J]. 中国科学:生命科学, 2016, 46(12):1388-1399.
ZHU H W, ZHANG Y P, LI Y. Microbial electrosynthesis:CO2 fixation driven by electricity[J].ScientiaSinica Vitae, 2016,46(12):1388-1399(in Chinese).
|
王莹, 刘同旭, 李芳柏. 微生物-矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4):347-356.
WANG Y,LIU T X,LI F B.Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral interface[J].Advances in Earth Science, 2016, 31(4):347-356(in Chinese).
|
DELA ROSA J M, MILLER A Z, KNICKER H. Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar[J]. Scientific Reports, 2018, 8(1):2896. DOI:10.1038/s41598-018-21257-5.
|