WANG Q Y D, CUI Y, LIU X. Instances of soil and crop heavy metal contamination in China[J]. Soil & Sediment Contamination, 2001, 10(5):497-510.
DONG J, YANG Q W, SUN L N, et al. Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China[J]. Environmental Earth Sciences, 2011, 64(5):1317-1321.
NABULO G, YOUNG S D, BLACK C R. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils[J]. Science of The Total Environment, 2010, 408(22):5338-5351.
FACCHINELLI A, SACCHI E, MALLEN L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 2001, 114(3):313-324.
SOLGI E, ESMAILI-SARI A, RIYAHI-BAKHTIARI A, et al. Soil contamination of metals in the three industrial estates, arak, iran[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(4):634-638.
孔涛,刘民,淑敏,等. 低分子量有机酸对土壤微生物数量和酶活性的影响[J]. 环境化学,2016,35(2):348-354. KONG T, LIU M, SHU M, et al. Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities[J]. Environmental Chemistry, 2016, 35(2):348-354(in Chinese).
JONES D L. Organic acids in the rhizosphere:A critical review[J]. Plant and Soil, 1998, 205(1):25-44.
RYAN P R, DELHAIZE E, JONES D L. Function and mechanism of organic anion exudation from plant roots[M]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001:527-560.
LACKOVIC K, JOHNSON B B, ANGOVE M J, et al. Modeling the adsorption of citric acid onto Muloorina illite and related clay minerals[J]. Journal of Colloid and Interface Science, 2003, 267(1):49-59.
刘世亮,陈娇君,刘芳,等. 石灰性褐土中柠檬酸对土壤Cu(Ⅱ)、Cd(Ⅱ)吸附-解吸的影响[J]. 环境化学,2012,31(6):849-855. LIU S L, CHEN J J, LIU F, et al. Effects of citric acid on Cu(Ⅱ) and Cd(Ⅱ) adsorption & desorption in calcareous cinnamon soil[J]. Environmental Chemistry, 2012, 31(6):849-855(in Chinese).
JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248(1):31-41.
莫淑勋. 土壤中有机酸的产生、转化及对土壤肥力的某些影响[J]. 土壤学进展,1986(4):3-12. MO S X. Production and transformation of organic acids in soil and certain effects on soil fertility[J]. Progress in Soil Science, 1986 (4):3-12(in Chinese).
丁永祯,李志安,邹碧. 土壤低分子量有机酸及其生态功能[J]. 土壤,2005,37(3):243-250. DING Y Z, LI Z A, ZOU B. Low-molecular-weight organic acids and their ecological roles in soil[J]. Soils, 2005, 37(3):243-250(in Chinese).
LIU H, CHEN T, FROST R L. An overview of the role of goethite surfaces in the environmen[J]. Chemosphere, 2014, 103:1-11.
BOWLES J F W. The iron oxides:Structure, properties reactions occurrence and uses[J]. Mineralogical Magazine, 1997, 61(408):740-741.
YEASMIN S, SINGH B, KOOKANA R S, et al. Influence of mineral characteristics on the retention of low molecular weight organic compounds:A batch sorption-desorption and ATR-FTIR study[J]. Journal of Colloid and Interface Science, 2014, 432:246-257.
BONITO M D, LOFTS S, GROENENBERG J E. Chapter 11-models of geochemical peciation:Structure and applications[M]. Environmental Geochemistry (Second Edition). Elsevier, 2018:237-305.
SPOSITO G. The chemistry of soils[M]. New York:Oxford University Press, 1989:277.
WENG L, TEMMINGHOFF E J, VAN RIEMSDIJK W H. Contribution of individual sorbents to the control of heavy metal activity in sandy soil[J]. Environmental Science & Technology, 2001, 35:4436-4443.
KOMAREK M, ANTELO J, KRALOVA M, et al. Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(Ⅲ) oxides[J]. Chemical Geology, 2018, 493:189-198.
HIEMSTRA T, VAN RIEMSDIJK W H. A surface structural approach to ion adsorption:The Charge Distribution (CD) Model[J]. Journal of Colloid and Interface Science, 1996, 179(2):488-508.
HIEMSTRA T, DE WIT J C M, VAN RIEMSDIJK W H. Multisite proton adsorption modeling at the solid/solution interface of (HYDR)oxides:A new approach:Ⅱ. Application to various important (HYDR)oxides[J]. Journal of Colloid and Interface Science, 1989, 133(1):105-117.
HIEMSTRA T, VAN RIEMSDIJK W H. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (HYDR)oxides[J]. Journal of Colloid and Interface Science, 1999, 210(1):182-193.
RUSTAD J R, BOILY J F O. Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (α-FeOOH)[J]. American Mineralogist, 2010, 95(2/3):414-417.
HAN J, KATZ L E. Capturing the variable reactivity of goethites in surface complexation modeling by correlating model parameters with specific surface area[J]. Geochimica et Cosmochimica Acta, 2019, 244:248-263.
VILLALOBOS M, CHENEY M A, ALCARAZ-CIENFUEGOS J. Goethite surface reactivity:Ⅱ. A microscopic site-density model that describes its surface area-normalized variability[J]. Journal of Colloid and Interface Science, 2009, 336(2):412-422.
吴江彤. 重金属-柠檬酸-土壤地球化学吸附模型的构建及应用[D]. 南京:南京大学,2020. WU J T. Establishment and application of heavy metal-citric acid-soil geochemical adsorption model[D]. Nanjing:Nanjing University, 2020(in Chinese).
POWELL K, BROWN P, BYRNE R, et al. Chemical speciation of environmentally significant metals with inorganic ligands. Part 4:The Cd2++OH-, Cl-, CO32-, SO42- and PO43- systems (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83:1163-1214.
POWELL K, BROWN P, BYRNE R, et al. Chemical speciation of environmentally significant metals with inorganic ligands. Part 3:The Pb2++OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2009, 81:2425-2476.
KEIZER M G, VAN RIEMSDIJK W H. ECOSAT:A computer program for the calculation of speciation and transport in soil-water systems, version 4.9 user's manual[M]. The Netherlands:Wageningen University, 2009.
KINNIBURGH D G. FIT user guide, BGS technical report WD/93/23[M]. Keyworth, UK:British Geological Survey, 1993.
LENHART J J, BARGAR J R, DAVIS J A. Spectroscopic evidence for ternary surface complexes in the lead(Ⅱ)-malonic acid-hematite system[J]. Journal of Colloid and Interface Science, 2001, 234(2):448-452.
NAKAMOTO K. Infrared and raman spectra of inorganic and coordination compounds[M]. New York:Wiley-Interscience, 1997.
FILIUS J D, HIEMSTRA T, VAN RIEMSDIJK W H. Adsorption of small weak organic acids on goethite:Modeling of mechanisms[J]. Journal of Colloid and Interface Science, 1997, 195(2):368-380.
ZHAO X, JIANG Y, GU X, et al. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils[J]. Environmental Pollution, 2018, 238:590-598.
WU J, ZHAO X, LI Z, et al. Thermodynamic and kinetic coupling model of Cd(Ⅱ) and Pb(Ⅱ) adsorption and desorption on goethite[J]. Science of The Total Environment, 2020, 727:138730.
OSTERGREN J D, BARGAR J R, BROWN G E, et al. Combined EXAFS and FTIR investigation of sulfate and carbonate effects on Pb(Ⅱ) sorption to goethite (alpha-FeOOH)[J]. Journal of Synchrotron Radiation, 1999, 6:645-647.
SONG Y, SWEDLUND P J, SINGHAL N. Copper(Ⅱ) and Cadmium(Ⅱ) sorption onto ferrihydrite in the presence of phthalic acid:Some properties of the ternary complex[J]. Environmental Science & Technology, 2008, 42(11):4008-4013.