Yang R Y, He Y H, Luo L F, et al. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium[J]. Ecotoxicology and Environmental Safety, 2021, 222:112516
|
DalCorso G, Fasani E, Manara A, et al. Heavy metal pollutions:State of the art and innovation in phytoremediation[J]. International Journal of Molecular Sciences, 2019, 20(14):3412
|
Vesna M, Aleksandra B, Danijela D, et al. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2015, 78:130-140
|
Wang K, Ma J Y, Li M Y, et al. Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells:Oxidative stress, cell cycle arrest and apoptosis[J]. Science of the Total Environment, 2021, 756:143951
|
Chang C, Yin R S, Zhang H, et al. Bioaccumulation and health risk assessment of heavy metals in the soil-rice system in a typical seleniferous area in central China[J]. Environmental Toxicology and Chemistry, 2019, 38(7):1577-1584
|
Gupta N, Yadav K K, Kumar V, et al. Trace elements in soil-vegetables interface:Translocation, bioaccumulation, toxicity and amelioration:A review[J]. Science of the Total Environment, 2019, 651:2927-2942
|
Pecina V, Brtnický M, Baltazár T, et al. Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China:A meta-analysis[J]. Chemosphere, 2021, 267:129215
|
Knoell D L, Wyatt T A. The adverse impact of cadmium on immune function and lung host defense[J]. Seminars in Cell & Developmental Biology, 2021, 115:70-76
|
王莉, 闻双全, 贺双江, 等. 慢性镉暴露对小鼠大脑皮质的毒性损伤作用[J]. 畜牧与兽医, 2021, 53(2):50-55
Wang L, Wen S Q, He S J, et al. Toxic damage effect of chronic cadmium exposure on the cerebral cortex of mouse[J]. Animal Husbandry & Veterinary Medicine, 2021, 53(2):50-55(in Chinese)
|
龚频, 高浩天, 杨文娟, 等. 蓝莓花青素对镉致小鼠心脏损伤的改善作用[J]. 陕西科技大学学报, 2020, 38(6):48-53
Gong P, Gao H T, Yang W J, et al. The amelioration effect of blueberry anthocyanins on cadmium-induced mice heart damage[J]. Journal of Shaanxi University of Science & Technology, 2020, 38(6):48-53(in Chinese)
|
陶灿. 日粮镉对蛋鸡生产性能、蛋品质、肝脏和肾脏的影响[D]. 武汉:华中农业大学, 2019:42 Tao C. Effects of dietary cadmium on performance, egg quality, liver and kidney damage of laying hens[D]. Wuhan:Huazhong Agricultural University, 2019:42(in Chinese)
|
Marín-García J, Akhmedov A T. Mitochondrial dynamics and cell death in heart failure[J]. Heart Failure Reviews, 2016, 21(2):123-136
|
张文华, 闻双全, 王莉, 等. 葛根素对镉致大鼠肝毒性损伤的保护作用[J]. 中国兽医科学, 2020, 50(10):1333-1339
Zhang W H, Wen S Q, Wang L, et al. Protective effect of puerarin on toxic damage caused by cadmium in livers of rats[J]. Chinese Veterinary Science, 2020, 50(10):1333-1339(in Chinese)
|
Wan J, Xu Q S, He J. Maternal chitosan oligosaccharide supplementation during late gestation and lactation affects offspring growth[J]. Italian Journal of Animal Science, 2018, 17(4):994-1000
|
Gu M, Pan S H, Li Q, et al. Chitosan and chitooligosaccharides attenuate soyabean meal-induced intestinal inflammation of turbot (Scophthalmus maximus):Possible involvement of NF-кB, activator protein-1 and mitogen-activated protein kinases pathways[J]. British Journal of Nutrition, 2021, 126(11):1651-1662
|
Ahmed S M U, Luo L, Namani A, et al. Nrf2 signaling pathway:Pivotal roles in inflammation[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2017, 1863(2):585-597
|
Wang Y M, Xiong Y L, Zhang A P, et al. Oligosaccharide attenuates aging-related liver dysfunction by activating Nrf2 antioxidant signaling[J]. Food Science & Nutrition, 2020, 8(7):3872-3881
|
彭媛媛, 欧阳富龙, 贺建华. 壳寡糖在动物体内抗氧化功能研究进展[J]. 饲料博览, 2015(8):16-18 Peng Y Y, Ouyang F L, He J H. Research advances of chitosan oligosaccharide on the antioxidant function in animal[J]. Feed Review, 2015
(8):16-18(in Chinese)
|
郑雯静, 杨靖亚, 刘克海. 壳寡糖对三氧化二砷致大鼠肝细胞毒性的保护作用[J]. 安徽农业大学学报, 2021, 48(3):412-417
Zheng W J, Yang J Y, Liu K H. Protective effect of chitosan oligosaccharide against the toxicity of arsenic trioxide toward Buffalo rat liver cells[J]. Journal of Anhui Agricultural University, 2021, 48(3):412-417(in Chinese)
|
Zhao Q N, Yin L Q, Zhang L R, et al. Chitoheptaose promotes heart rehabilitation in a rat myocarditis model by improving antioxidant, anti-inflammatory, and antiapoptotic properties[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020:2394704
|
孙继鹏. 壳寡糖金属配合物对扇贝体内重金属镉的影响[D]. 青岛:中国海洋大学, 2009:14 Sun J P. The effect of chitosan oligosaccharide complexes with metal elements on cadmium in viscera of Chlamys ferrari[D]. Qingdao:Ocean University of China, 2009:14(in Chinese)
|
Montes S, Juárez-Rebollar D, Nava-Ruíz C, et al. Immunohistochemical study of Nrf2-antioxidant response element as indicator of oxidative stress induced by cadmium in developing rats[J]. Oxidative Medicine and Cellular Longevity, 2015, 2015:570650
|
Zhang Y T, Ahmad K A, Khan F U, et al. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway[J]. Chemico-Biological Interactions, 2019, 305:54-65
|
Rius-Pérez S, Pérez S, Martí-Andrés P, et al. Nuclear factor kappa B signaling complexes in acute inflammation[J]. Antioxidants & Redox Signaling, 2020, 33(3):145-165
|
Kim E K, Choi E J. Pathological roles of MAPK signaling pathways in human diseases[J]. Biochimica et Biophysica Acta, 2010, 1802(4):396-405
|
Gorska M M, Liang Q L, Stafford S J, et al. MK2 controls the level of negative feedback in the NF-κB pathway and is essential for vascular permeability and airway inflammation[J]. Journal of Experimental Medicine, 2007, 204(7):1637-1652
|
Cheng C Y, Mruk D D. The blood-testis barrier and its implications for male contraception[J]. Pharmacological Reviews, 2012, 64(1):16-64
|
Huang G Q, Sun J P, Wang D F, et al. Chitosan oligosaccharide-Ca complex accelerates the depuration of cadmium from Chlamys ferrari[J]. Journal of Ocean University of China, 2012, 11(2):219-226
|
Nguyen T, Nioi P, Pickett C B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J]. Journal of Biological Chemistry, 2009, 284(20):13291-13295
|
Radan M, Dianat M, Badavi M, et al. In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10):The effective role of gallic acid[J]. Free Radical Research, 2019, 53(2):210-225
|
Ren L F, Qi K, Zhang L, et al. Glutathione might attenuate cadmium-induced liver oxidative stress and hepatic stellate cell activation[J]. Biological Trace Element Research, 2019, 191(2):443-452
|
Kaspar J W, Niture S K, Jaiswal A K. Nrf2:INrf2(Keap1) signaling in oxidative stress[J]. Free Radical Biology and Medicine, 2009, 47(9):1304-1309
|
Ben P L, Zhang Z P, Zhu Y Y, et al. L-theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation[J]. NeuroToxicology, 2016, 57:95-103
|
Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin:A review[J]. BioFactors, 2017, 43(5):645-661
|
Chen X M, Bi M Y, Yang J, et al. Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine[J]. Journal of Hazardous Materials, 2022, 421:126704
|
Adamse P, van der Fels-Klerx H J I, Jong J D. Cadmium, lead, mercury and arsenic in animal feed and feed materials-trend analysis of monitoring results[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2017, 34(8):1298-1311
|
Ma X Q, Hou M, Liu C B, et al. Cadmium accelerates bacterial oleic acid production to promote fat accumulation in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2022, 421:126723
|
Kuester R K, Waalkes M P, Goering P L, et al. Differential hepatotoxicity induced by cadmium in Fischer 344 and Sprague-Dawley rats[J]. Toxicological Sciences, 2002, 65(1):151-159
|
Yeh C M, Hsiao L J, Huang H J. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice[J]. Plant and Cell Physiology, 2004, 45(9):1306-1312
|
陈梦妍, 谢佳, 田丽, 等. ZKSCAN3介导的自噬在急性镉暴露肝毒性中的作用[J]. 局解手术学杂志, 2020, 29(12):944-949
Chen M Y, Xie J, Tian L, et al. Effect of ZKSCAN3 mediated autophagy in acute cadmium exposure-induced liver injury[J]. Journal of Regional Anatomy and Operative Surgery, 2020, 29(12):944-949(in Chinese)
|
Sun X R, Su F M, Chen X L, et al. Doppler ultrasound and photoplethysmographic assessment for identifying pregnancy-induced hypertension[J]. Experimental and Therapeutic Medicine, 2020, 19(3):1955-1960
|
Affinati A H, Auchus R J. Endocrine causes of hypertension in pregnancy[J]. Gland Surgery, 2020, 9(1):69-79
|
Silva N S D, Araújo N K, Daniele-Silva A, et al. Antimicrobial activity of chitosan oligosaccharides with special attention to antiparasitic potential[J]. Marine Drugs, 2021, 19(2):110
|
Xie W M, Xu P X, Liu Q. Antioxidant activity of water-soluble chitosan derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(13):1699-1701
|
Zhang X Y, Yang H B, Zheng J P, et al. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice[J]. Carbohydrate Polymers, 2021, 253:117218
|
许青松, 宫德正, 邹原, 等. 两种壳寡糖对急性肝损伤模型小鼠的保护作用[J]. 医药导报, 2008, 27(2):153-155
Xu Q S, Gong D Z, Zou Y, et al. Protective effect of two types of oligochitosans on CCl4-induced acute liver injury in mice[J]. Herald of Medicine, 2008, 27(2):153-155(in Chinese)
|
Azuma K, Osaki T, Minami S, et al. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides[J]. Journal of Functional Biomaterials, 2015, 6(1):33-49
|
朱常龙, 汪东风, 孙继鹏, 等. 壳寡糖配合物对扇贝产品中镉的脱除作用[J]. 农产品加工:创新版, 2010(7):10-13, 20
Zhu C L, Wang D F, Sun J P, et al. The removal of cadmium from Chlamys ferrari by chitosan oligosaccharide complexes with Ca and Mg[J]. Innovational Edition of Farm Products Processing, 2010(7):10-13, 20(in Chinese)
|
Liu J, Qu W, Kadiiska M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. Toxicology and Applied Pharmacology, 2009, 238(3):209-214
|
Fernandes J C, Eaton P, Nascimento H, et al. Antioxidant activity of chitooligosaccharides upon two biological systems:Erythrocytes and bacteriophages[J]. Carbohydrate Polymers, 2010, 79(4):1101-1106
|
Qiao Y, Bai X F, Du Y G. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress[J]. International Immunopharmacology, 2011, 11(1):121-127
|
翟星辰. 壳寡糖免疫增强及对肾癌抑制作用的研究[D]. 哈尔滨:哈尔滨工业大学, 2019:71-72 Zhai X C. Research on immune enhancement of chitosan oligosaccharides and its inhibitory effects against renal carcinoma[D]. Harbin:Harbin Institute of Technology, 2019:71
-72(in Chinese)
|
张梦龙, 赵璧忱, 邢菲菲, 等. 热休克蛋白27通过调节氧化应激影响奶牛胎衣不下发生机制研究[J]. 黑龙江八一农垦大学学报, 2021, 33(1):21-26
, 75 Zhang M L, Zhao B C, Xing F F, et al. Mechanism of retained fetal membranes in cow affected by HSP27 through regulating oxidative stress[J]. Journal of Heilongjiang Bayi Agricultural University, 2021, 33(1):21-26, 75(in Chinese)
|
Beiraghi-Toosi A, Askarian R, Sadrabadi Haghighi F, et al. Burn-induced oxidative stress and serum glutathione depletion; a cross sectional study[J]. Emergency, 2018, 6(1):e54
|
Copple I M, Goldring C E, Kitteringham N R, et al. The Keap1-Nrf2 Cellular Defense Pathway:Mechanisms of Regulation and Role in Protection against Drug-Induced Toxicity[M]//Uetrecht J. Handbook of Experimental Pharmacology. Springer, 2010:233-266
|
Wu K C, Liu J J, Klaassen C D. Nrf2 activation prevents cadmium-induced acute liver injury[J]. Toxicology and Applied Pharmacology, 2012, 263(1):14-20
|
Casalino E, Calzaretti G, Landriscina M, et al. The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats:Comparison with the toxic effect on NAD(P)H:Quinone reductase[J]. Toxicology, 2007, 237(1-3):24-34
|
李凯群. 高胆固酵通过激活ROS介导的NF-кB通路抑制肌腱干细胞的腱系分化[D]. 广州:南方医科大学, 2019:40-41 Li K Q. High cholesterol inhibits tenogenic differentiation in tendon-derived stem cells through ROS-activated NF-κB signaling[D]. Guangzhou:Southern Medical University, 2019
:40-41(in Chinese)
|
Luo Z G, Dong X X, Ke Q, et al. Chitooligosaccharides inhibit ethanol-induced oxidative stress via activation of Nrf2 and reduction of MAPK phosphorylation[J]. Oncology Reports, 2014, 32(5):2215-2222
|
Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection:Mechanism of action and the regulatory mechanisms[J]. Journal of Cellular Physiology, 2020, 235(4):3119-3130
|
林谦, 邱磊, 云龙, 等. 核因子E2相关因子2调控机体抗氧化途径特性及其与畜禽的健康和肉品质的关系[J]. 动物营养学报, 2014, 26(6):1421-1429
Lin Q, Qiu L, Yun L, et al. Nuclear factor erythroid-2-related factor 2 mediated antioxidant pathway character and its relation on health and meat quality of livestock and poultry[J]. Chinese Journal of Animal Nutrition, 2014, 26(6):1421-1429(in Chinese)
|