FASSARELLA M, BLAAK E E, PENDERS J, et al. Gut microbiome stability and resilience:elucidating the response to perturbations in order to modulate gut health[J]. Gut, 2021, 70(3):595-605.
XU X F, XU P P, MA C, et al. Gut microbiota, host health, and polysaccharides[J]. Biotechnology advances, 2013, 31(2):318-337.
LIN L, ZHANG J Q. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases[J]. BMC immunology, 2017, 18(1):2.
YU D H, MENG X, DE VOS W M, et al. Implications of gut microbiota in complex human diseases[J]. International journal of molecular sciences, 2021, 22(23):12661.
丁晗,周童,王娟,等.典型环境污染物对肠道菌群的影响及机制研究进展[J].生态毒理学报, 2021, 16(2):34-49. DING H, ZHOU T, WANG J, et al. Research progress on the effects of typical environmental pollutants on gut microbiota and their underlying mechanisms[J]. Asian journal of ecotoxicology, 2021, 16(2):34-49.
SUN R L, XU K, JI S B, et al. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice[J]. Science of the total environment, 2020, 705:135879.
ZHAO Y L, ZHOU C M, WU C, et al. Subchronic oral mercury caused intestinal injury and changed gut microbiota in mice[J]. Science of the total environment, 2020, 721:137639.
XIA J Z, JIN C Y, PAN Z H, et al. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice[J]. Science of the total environment, 2018, 631/632:439-448.
LI Y X, ZUO Z Z, ZHANG B, et al. Impacts of early-life paraquat exposure on gut microbiota and body weight in adult mice[J]. Chemosphere, 2022, 291(Pt 3):133135.
LEE J, KIM E S, ROH B S, et al. Occurrence of disinfection by-products in tap water distribution systems and their associated health risk[J]. Environmental monitoring and assessment, 2013, 185(9):7675-7691.
MCCULLOCH A. Chloroform in the environment:occurrence, sources, sinks and effects[J]. Chemosphere, 2003, 50(10):1291-1308.
RAMLUCKAN K, MOODLEY K G, BUX F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method[J]. Fuel, 2014, 116:103-108.
MEEK M E, BEAUCHAMP R, LONG G, et al. Chloroform:exposure estimation, hazard characterization, and exposure-response analysis[J]. Journal of toxicology and environmental health part b, critical reviews, 2002, 5(3):283-334.
SEKAR A, VARGHESE G K, RAVI VARMA M K. Chloroform:an emerging pollutant in the air[M]//Energy, environment, and sustainability. Singapore:Springer Singapore, 2021:101-129.
PHILIP B K, ANAND S S, PALKAR P S, et al. Subchronic chloroform priming protects mice from a subsequently administered lethal dose of chloroform[J]. Toxicology and applied pharmacology, 2006, 216(1):108-121.
ZHU S M, LI C, XU J J, et al. Exposure to chloramine and chloroform in tap water and adverse perinatal outcomes in Shanghai[J]. International journal of environmental research and public health, 2022, 19(11):6508.
GOLDEN R J, HOLM S E, ROBINSON D E, et al. Chloroform mode of action:implications for cancer risk assessment[J]. Regulatory toxicology and pharmacology, 1997, 26(2):142-155.
BHARAGAVA R N, PURCHASE D, SAXENA G, et al. Applications of metagenomics in microbial bioremediation of pollutants[M]//Microbial diversity in the genomic era. Amsterdam:Elsevier, 2019:459-477.
COFFIN J C, GE R, YANG S, et al. Effect of trihalomethanes on cell proliferation and DNA methylation in female B6C3F1 mouse liver[J]. Toxicological sciences, 2000, 58(2):243-252.
AUTTACHOAT W, GERMOLEC D R, COLLINS B J, et al. Immunotoxicological profile of chloroform in female B6C3F1 mice when administered in drinking water[J]. Drug and chemical toxicology, 2009, 32(1):77-87.
JAYAWEERA D, ISLAM S, GUNJA N, et al. Chloroform ingestion causing severe gastrointestinal injury, hepatotoxicity and dermatitis confirmed with plasma chloroform concentrations[J]. Clinical toxicology, 2017, 55(2):147-150.
LIU Y H, LI Y H, XIA Y H, et al. The dysbiosis of gut microbiota caused by low-dose cadmium aggravate the injury of mice liver through increasing intestinal permeability[J]. Microorganisms, 2020, 8(2):211.
FENG D, ZHANG H M, JIANG X, et al. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice[J]. Environmental pollution, 2020, 265(Pt A):114880.
GOSALBES M J, DURBÁN A, PIGNATELLI M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota[J]. PLoS One, 2011, 6(3):e17447.
ENRIGHT E F, GRIFFIN B T, GAHAN C G M, et al. Microbiome-mediated bile acid modification:role in intestinal drug absorption and metabolism[J]. Pharmacological research, 2018, 133:170-186.
ZAWISTOWSKA-ROJEK A, KOŚMIDER A, STĘPIEŃK, et al. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria[J]. Archives of microbiology, 2022, 204(5):285.
PUIG R, PELLITERO S, MARTINEZ E, et al. Changes in gut microbiota and metabolic profiles after sleeve gastrectomy[J]. Endocrine abstracts, 2018:56.
KUSTERS J G, VAN VLIET A H M, KUIPERS E J. Pathogenesis of Helicobacter pylori infection[J]. Clinical microbiology reviews, 2006, 19(3):449-490.
CROWE S E. Helicobacter pylori infection[J]. New England journal of medicine, 2019, 380(12):1158-1165.
ADAK A, KHAN M R. An insight into gut microbiota and its functionalities[J]. Cellular and molecular life sciences, 2019, 76(3):473-493.
QI X Y, YUN C Y, PANG Y L, et al. The impact of the gut microbiota on the reproductive and metabolic endocrine system[J]. Gut microbes, 2021, 13(1):1-21.
ZHOU Z W, WANG D, XU X Y, et al. Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model[J]. Food chemistry, 2023, 409:135195.
WANG B, WU L J, CHEN J, et al. Metabolism pathways of arachidonic acids:mechanisms and potential therapeutic targets[J]. Signal Transduction and Targeted Therapy, 2021, 6(1):94
HANNA V S, HAFEZ E A A. Synopsis of arachidonic acid metabolism:a review[J]. Journal of advanced research, 2018, 11:23-32.
WANG T Q, FU X J, CHEN Q F, et al. Arachidonic acid metabolism and kidney inflammation[J]. International journal of molecular sciences, 2019, 20(15):3683.
LIN Z S, WU J M, WANG J P, et al. Dietary Lactobacillus reuteri prevent from inflammation mediated apoptosis of liver via improving intestinal microbiota and bile acid metabolism[J]. Food chemistry, 2023, 404(Pt B):134643.
LUCAS L N, BARRETT K, KERBY R L, et al. Dominant bacterial[WT《Times New Roman》]phyla[WT《Times New Roman》] from the human gut show widespread ability to transform and conjugate bile acids[J]. mSystems, 2021, 6:e0080521.
HOSHINO Y, GAUCHER E A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25):e2101276118.
CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The carbohydrate-active EnZymes database (CAZy):an expert resource for glycogenomics[J]. Nucleic acids research, 2009, 37(Database issue):D233-D238.
KAUSHAL G, THAKUR M, RAI A K, et al. A comprehensive metagenomic analysis framework revealing microbiome profile and potential for hydrocarbon degradation and carbohydrate metabolism in a Himalayan artificial lake[J]. Sustainability, 2022, 14(18):11455.
REID J E S J, YAKUBOV G E, LAWRENCE S J. Non-starch polysaccharides in beer and brewing:a review of their occurrence and significance[J]. Critical reviews in food science and nutrition, 2024, 64(3):837-851.
TUDU M, SAMANTA A. Natural polysaccharides:chemical properties and application in pharmaceutical formulations[J]. European polymer journal, 2023, 184:111801.
BEDU-FERRARI C, BISCARRAT P, LANGELLA P, et al. Prebiotics and the human gut microbiota:from breakdown mechanisms to the impact on metabolic health[J]. Nutrients, 2022, 14(10):2096.
ZHAO T T, YUE H, PENG J F, et al. Degradation of xylan by human gut Bacteroides xylanisolvens XB1A[J]. Carbohydrate polymers, 2023, 315:121005.
LI Y M, SHI X M, ZUO Y, et al. Multiplexed target enrichment enables efficient and in-depth analysis of antimicrobial resistome in metagenomes[J]. Microbiology Spectrum, 2022, 10(6):e0229722.
THANGARAJU P, VENKATESAN S. WHO ten threats to global health in 2019:antimicrobial resistance[J]. Cukurova medical journal, 2019, 44(3):1150-1151.
MAKKAEW P, KONGPRAJUG A, CHYEROCHANA N, et al. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters[J]. International journal of hygiene and environmental health, 2021, 238:113859.
ALCOCK B P, HUYNH W, CHALIL R, et al. CARD 2023:expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database[J]. Nucleic acids research, 2023, 51(D1):D690-D699.
RAHMAN S F, OLM M R, MOROWITZ M J, et al. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome[J]. mSystems, 2018, 3(1):e00123-17.
RIAZ RAJOKA M S, THIRUMDAS R, MEHWISH H M, et al. Role of food antioxidants in modulating gut microbial communities:novel understandings in intestinal oxidative stress damage and their impact on host health[J]. Antioxidants, 2021, 10(10):1563.