苟巧林, 李燕, 李宏章, 等. 碳纳米管复合亚麻纤维柔性传感材料的制备[J]. 复合材料学报, 2021, 38(7):2244-2253 Gou Q L, Li Y, Li H Z, et al. Preparation of flexible sensing material of flax fiber combined carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(7):2244-2253(in Chinese)
吕娜. 基于纳米流体润滑的钛合金车削刀具磨损研究[J]. 机电工程, 2020, 37(10):1231-1235 Lv N. Wear of titanium alloy turning tool based on nano-fluid lubrication[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(10):1231-1235(in Chinese)
唐光生, 王峰. 硫酸盐与冻融循环耦合作用下碳纳米管掺量对混凝土力学性能和微观结构的影响[J]. 水力发电, 2020, 46(11):131-135 Tang G S, Wang F. Effect of carbon nanotubes content on mechanical properties and microstructure of concrete exposed to the coupling action of sulfate and freeze-thaw cycles[J]. Water Power, 2020, 46(11):131-135(in Chinese)
Lopardo C R, Zhang L, Mitsch W J, et al. Comparison of nutrient retention efficiency between vertical-flow and floating treatment wetland mesocosms with and without biodegradable plastic[J]. Ecological Engineering, 2019, 131:120-130
Hu X B, Liu X B, Yang X Y, et al. Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles:Implications for wastewater treatment[J]. Chemical Engineering Journal, 2018, 348:35-45
Yang X Y, Chen Y, Liu X B, et al. Influence of titanium dioxide nanoparticles on functionalities of constructed wetlands for wastewater treatment[J]. Chemical Engineering Journal, 2018, 352:655-663
Choudhury M I, Segersten J, Hellman M, et al. Importance of plant species for nitrogen removal using constructed floating wetlands in a cold climate[J]. Ecological Engineering, 2019, 138:126-132
Vymazal J. Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting-Biomass and load matter the most[J]. Ecological Engineering, 2020, 155:105962
Lodge K A, Tyler A C. Divergent impact of grazing on plant communities of created wetlands with varying hydrology and antecedent land use[J]. Wetlands Ecology and Management, 2020, 28(5):797-813
Hai R T, Wang Y L, Wang X H, et al. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge[J]. PLoS One, 2014, 9(9):e107345
Yang X Y, He Q, Guo F C, et al. Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands:Microbial community structure, enzyme activities, and metabolism process[J]. Journal of Hazardous Materials, 2021, 401:123270
高俊凤. 植物生理学实验指导[M]. 5版. 北京:高等教育出版社, 2006:57-61
杨祥宇. 纳米二氧化钛对人工湿地水处理系统的影响机制研究[D]. 重庆:重庆大学, 2018:27 Yang X Y. Impacts mechanism of titanium oxidation nanoparticles on functionalities of constructed wetlands[D]. Chongqing:Chongqing University, 2018:27(in Chinese)[SJJ6. 4mm]
袁刚强, 龚继来, 曾光明. 单壁碳纳米管材料对水稻幼苗的毒性效应[J]. 环境科学学报, 2015, 35(12):4143-4149 Yuan G Q, Gong J L, Zeng G M. Phytotoxicity of single-walled carbon nanotubes to rice seedling (Oryza sativa L.)[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4143-4149(in Chinese)
Cañas J E, Long M, Nations S, et al. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1922
罗春燕, 徐文冰, 陈红春, 等. 胶体富勒烯与菲对水稻发芽及幼苗生长的影响[J]. 环境化学, 2016, 35(5):1076-1083 Luo C Y, Xu W B, Chen H C, et al. Effect of nC60 colloids and phenanthrene on germination and seedling growth of rice[J]. Environmental Chemistry, 2016, 35(5):1076-1083(in Chinese)
郭敏, 龚继来, 曾光明. 多壁碳纳米管对水稻幼苗的植物毒性研究[J]. 生态毒理学报, 2016, 11(5):94-102 Guo M, Gong J L, Zeng G M. Comprehensive phytotoxicity assessment of multi-wall carbon nanotubes on rice seedlings[J]. Asian Journal of Ecotoxicology, 2016, 11(5):94-102(in Chinese)
Ali M, Cheng Z H, Ahmad H, et al. Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ROS employed by crops against Verticillium dahliae wilts[J]. Journal of Plant Interactions, 2018, 13(1):353-363
Qi J S, Song C P, Wang B S, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack[J]. Journal of Integrative Plant Biology, 2018, 60(9):805-826
Pan C R, Bao Y Y, Guo A Y, et al. Environmentally relevant-level CeO2 NP with ferrous amendment alters soil bacterial community compositions and metabolite profiles in rice-planted soils[J]. Journal of Agricultural and Food Chemistry, 2020, 68(31):8172-8184
Zhao S L, He L, Lu Y F, et al. The impact of modified nano-carbon black on the earthworm Eisenia fetida under turfgrass growing conditions:Assessment of survival, biomass, and antioxidant enzymatic activities[J]. Journal of Hazardous Materials, 2017, 338:218-223
袁刚强. 单壁碳纳米管材料(SWCNTs)对水稻的植物毒性效应的研究[D]. 长沙:湖南大学, 2015:37-50 Yuan G Q. Single-walled carbon nanotubes phytotoxicity to rice seedling (Oryza sativa L.)[D]. Changsha:Hunan University, 2015:37 -50(in Chinese)
Hao Y, Yu F F, Lv R, et al. Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C:N ratio and plant hormones concentrations[J]. PLoS One, 2016, 11(6):e0157264
朱丹丹, 周启星. 功能纳米材料在重金属污染水体修复中的应用研究进展[J]. 农业环境科学学报, 2018, 37(8):1551-1564 Zhu D D, Zhou Q X. A review on the removal of heavy metals from water using nanomaterials[J]. Journal of Agro-Environment Science, 2018, 37(8):1551-1564(in Chinese)
Tan X M, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15):3479-3487
Lin D H, Xing B S. Phytotoxicity of nanoparticles:Inhibition of seed germination and root growth[J]. Environmental Pollution, 2007, 150(2):243-250
Shen C X, Zhang Q F, Li J, et al. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes[J]. American Journal of Botany, 2010, 97(10):1602-1609
Mellor S B, Vavitsas K, Nielsen A Z, et al. Photosynthetic fuel for heterologous enzymes:The role of electron carrier proteins[J]. Photosynthesis Research, 2017, 134(3):329-342
Huang J, Cheng J P, Yi J. Impact of silver nanoparticles on marine diatom Skeletonema costatum[J]. Journal of Applied Toxicology, 2016, 36(10):1343-1354
Queiroz A M, Mezacasa A V, Graciano D E, et al. Quenching of chlorophyll fluorescence induced by silver nanoparticles[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 168:73-77
王李原. 碳纳米纤维/碳纤维快速分析光质对植物激素的影响[D]. 延吉:延边大学, 2019:19-29 Wang L Y. Rapid analysis the effects of light quality on plant hormones by carbon nanofibers/carbon fibers[D]. Yanji:Yanbian University, 2019:19 -29(in Chinese)
Tao X J, Yu Y X, Fortner J D, et al. Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus:Evaluation of the sub-lethal photosynthetic responses and inhibition mechanism[J]. Chemosphere, 2015, 122:162-167
Santos S M A, Dinis A M, Rodrigues D M F, et al. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems[J]. Aquatic Toxicology, 2013, 142-143:347-354