Attene-Ramos M S, Miller N, Huang R L, et al. The Tox21 robotic platform for the assessment of environmental chemicals:From vision to reality [J]. Drug Discovery Today, 2013, 18(15-16):716-723
|
Richard A M, Huang R L, Waidyanatha S, et al. The Tox2110K compound library:Collaborative chemistry advancing toxicology [J]. Chemical Research in Toxicology, 2021, 34(2):189-216
|
Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals:Perspective and limitations [J]. Toxicology in Vitro, 2022, 84:105451
|
Bambino K, Chu J. Zebrafish in toxicology and environmental health [J]. Current Topics in Developmental Biology, 2017, 124:331-367
|
Horzmann K A, Freeman J L. Making waves:New developments in toxicology with the zebrafish [J]. Toxicological Science, 2018, 163(1):5-12
|
Howe K, Clark M D, Torroja C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446):498-503
|
Mao Y S, Hong K, Liao W, et al. Generation of a novel transgenic zebrafish for studying adipocyte development and metabolic control [J]. International Journal of Molecular Sciences, 2021, 22(8):3994
|
Yang Z, Chen S H, Xue S L, et al. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model [J]. Biotechnology Letters, 2018, 40(11):1507-1508
|
Udvadia A J, Linney E. Windows into development:Historic, current, and future perspectives on transgenic zebrafish [J]. Developmental Biology, 2003, 256(1):1-17
|
Lai K P, Gong Z Y, Tse W K F. Zebrafish as the toxicant screening model:Transgenic and omics approaches [J]. Aquatic Toxicology, 2021, 234:105813
|
Organization for Economic Cooperation and Development (OECD). OECD guidelines for the testing of chemicals, section 2:Effects on biotic systems test No. 203:Acute toxicity for fish [R]. Paris:OECD, 2019
|
Strähle U, Scholz S, Geisler R, et al. Zebrafish embryos as an alternative to animal experiments:A commentary on the definition of the onset of protected life stages in animal welfare regulations [J]. Reproductive Toxicology, 2012, 33(2):128-132
|
Belanger S E, Rawlings J M, Carr G J. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals [J]. Environmental Toxicology and Chemistry, 2013, 32(8):1768-1783
|
Braunbeck T, Kais B, Lammer E, et al. The fish embryo test (FET):Origin, applications, and future [J]. Environmental Science and Pollution Research, 2015, 22(21):16247-16261
|
Lammer E, Carr G J, Wendler K, et al. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2009, 149(2):196-209
|
Sobanska M, Scholz S, Nyman A M, et al. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) [J]. Environmental Toxicology and Chemistry, 2018, 37(3):657-670
|
Kämmer N, Erdinger L, Braunbeck T. The onset of active gill respiration in post-embryonic zebrafish (Danio rerio) larvae triggers an increased sensitivity to neurotoxic compounds [J]. Aquatic Toxicology, 2022, 249:106240
|
Hu G, Siu S O, Li S, et al. Metabolism of calycosin, an isoflavone from Astragali radix, in zebrafish larvae [J]. Xenobiotica, 2012, 42(3):294-303
|
Wang Y H, Lv L, Yu Y J, et al. Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Danio rerio) [J]. Chemosphere, 2017, 170:61-67
|
Xiong Y M, Chen X Y, Li F, et al. Zebrafish larvae acute toxicity test:A promising alternative to the fish acute toxicity test [J]. Aquatic Toxicology, 2022, 246:106143
|
Zhang G Z, Roell K R, Truong L, et al. A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades [J]. Toxicology and Applied Pharmacology, 2017, 314:109-117
|
Hamm J T, Ceger P, Allen D, et al. Characterizing sources of variability in zebrafish embryo screening protocols [J]. ALTEX, 2019, 36(1):103-120
|
Malev O, Babič S, Sima Cota A, et al. Combining short-term bioassays using fish and crustacean model organisms with ToxCast in vitro data and broad-spectrum chemical analysis for environmental risk assessment of the river water (Sava, Croatia) [J]. Environmental Pollution, 2022, 292(Pt B):118440
|
Mikut R, Dickmeis T, Driever W, et al. Automated processing of zebrafish imaging data:A survey [J]. Zebrafish, 2013, 10(3):401-421
|
Chen C Y, Gu Y Y, Philippe J, et al. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae [J]. Nature Communications, 2021, 12(1):1118
|
Dong G Q, Wang N, Xu T, et al. Deep learning-enabled morphometric analysis for toxicity screening using zebrafish larvae [J]. Environmental Science & Technology, 2023, 57(46):18127-18138
|
Silva Brito R, Canedo A, Farias D, et al. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology:Historical review, recent advances, and trends [J]. The Science of the Total Environment, 2022, 848:157665
|
Colborn T D. Our Stolen Future [M]. New York:Penguin Books, 1996:20-30
|
Wang H, Tan J T, Emelyanov A, et al. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio [J]. Gene, 2005, 356:91-100
|
Chen H, Hu J Y, Yang J, et al. Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens [J]. Aquatic Toxicology, 2010, 96(1):53-61
|
Mattingly C J, McLachlan J A, Jr Toscano W A. Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrafish (Danio rerio) [J]. Environmental Health Perspectives, 2001, 109(8):845-849
|
Cooper R, David A, Lange A K, et al. Health effects and life stage sensitivities in zebrafish exposed to an estrogenic wastewater treatment works effluent [J]. Frontiers in Endocrinology, 2021, 12:666656
|
Tong S K, Mouriec K, Kuo M W, et al. A cyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells [J]. Genesis, 2009, 47(2):67-73
|
Poon K L, Wang X G, Lee S G P, et al. Editor's highlight:Transgenic zebrafish reporter lines as alternative in vivo organ toxicity models [J]. Toxicological Sciences, 2017, 156(1):133-148
|
Gu J, Wang H Y, Zhou L J, et al. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine [J]. The Science of the Total Environment, 2020, 731:139190
|
Sun M Q, Ding R Y, Ma Y M, et al. Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos [J]. Chemosphere, 2021, 282:131124
|
顾杰, 郭敏, 吉贵祥, 等. 利用转基因斑马鱼探究四溴联苯醚(BDE-47)的神经毒性作用[J]. 环境监控与预警, 2020, 12(5):99-104
Gu J, Guo M, Ji G X, et al. Detecting the neurotoxicity effects of 2,2',4,4'-tetrabromodiphenyl ether using transgenic zebrafish [J]. Environmental Monitoring and Forewarning, 2020, 12(5):99-104(in Chinese)
|
Wang G L, Rajpurohit S K, Delaspre F, et al. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass [J]. eLife, 2015, 4:e08261
|
Everson J L, Tseng Y C, Eberhart J K. High-throughput detection of craniofacial defects in fluorescent zebrafish [J]. Birth Defects Research, 2023, 115(3):371-389
|
Orger M B, de Polavieja G G. Zebrafish behavior:Opportunities and challenges [J]. Annual Review of Neuroscience, 2017, 40:125-147
|
Norton W H J. Zebrafish Protocols for Neurobehavioral Research [M]. New York:Springer New York, 2012:191-203
|
Franco-Restrepo J E, Forero D A, Vargas R A. A review of freely available, open-source software for the automated analysis of the behavior of adult zebrafish [J]. Zebrafish, 2019, 16(3):223-232
|
Hussain A, Audira G, Malhotra N, et al. Multiple screening of pesticides toxicity in zebrafish and Daphnia based on locomotor activity alterations [J]. Biomolecules, 2020, 10(9):1224
|
Tombari R J, Mundy P C, Morales K M, et al. Developmental neurotoxicity screen of psychedelics and other drugs of abuse in larval zebrafish (Danio rerio) [J]. ACS Chemical Neuroscience, 2023, 14(5):875-884
|
Che X F, Huang Y, Zhong K Y, et al. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos [J]. Environmental Pollution, 2023, 318:120861
|
Kämmer N, Reimann T, Ovcharova V, et al. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae [J]. Aquatic Toxicology, 2023, 258:106493
|
Adatto I, Lawrence C, Thompson M, et al. A new system for the rapid collection of large numbers of developmentally staged zebrafish embryos [J]. PLoS One, 2011, 6(6):e21715
|
Zhang X P, Lu Z, Gelinas D, et al. Batch transfer of zebrafish embryos into multiwell plates [J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(3):625-632
|
White D, Eroglu A, Wang G, et al. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates [J]. Nature Protocol, 2016, 142:2432-2453
|
马聪. 基于剂量-效应简化转录组预测化学品对斑马鱼的胚胎发育毒性[D]. 南京:南京大学, 2019:37-47 Ma C. Prediction of chemical-induced embryo toxicity using dose-dependent reduced transcriptomics approach [D]. Nanjing:Nanjing University, 2019:37
-47(in Chinese)
|
Gou X, Ma C, Ji H M, et al. Prediction of zebrafish embryonic developmental toxicity by integrating omics with adverse outcome pathway [J]. Journal of Hazardous Materials, 2023, 448:130958
|