SHARMA V K, FENG M B. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes:A review[J]. Journal of Hazardous Materials, 2019, 372:3-16.
LIU N, JING C W, LI Z M, et al. Effect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53(Fe)[J]. Materials Letters, 2019, 237:92-95.
TANG J T, WANG J L. Metal organic framework with coordinatively unsaturated sites as efficient fenton-like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9):5367-5377.
WANG D D, JIA F Y, WANG H. et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519:273-284.
ZHANG C, LI Y, SHUAI D M. et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control:A review[J].Chemosphere, 2019, 214:462-479.
吴斌,方艳芬,任慧君,等. g-C3N4光催化降解2,4-DCP的活性及机理[J]. 环境化学,2017,36(7):1484-1491. WU B, FANG Y F, REN H J, et al. Activity and mechanism of photocatalytic degradation for 2,4-DCP over g-C3N4[J]. Environmental Chemistry, 2017, 36(7):1484-1491(in Chinese).
ZHANG X D, YANG Y, HUANG W Y. g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation[J]. Materials Research Bulletin, 2018, 99:349-358.
LIU X, ZHANG J, DONG Y M. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14):12180-12187.
HUANG W Y, LIU N, ZHANG X D, et al. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(Ⅵ) reduction under visible light[J]. Applied Surface Science, 2017, 425:107-116.
BAI C P, BI J C, WU J B, et al. Fabrication of noble-metal-free g-C3N4-MIL-53(Fe) composite for enhanced photocatalytic H2-generation performance[J]. Applied Organometallic Chemistry, 2018, 32(12):e4597.
AI L H, LI L L, ZHANG C H. MIL-53(Fe):A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing[J]. Chemistry-A European Journal, 2013, 19(45):15105-15108.
LIU B K, WU Y J, HAN X L, et al. Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(20):17591-17601.
MARYAM S, ALI E, AHMAD J J, et al. Application of MIL-53(Fe)/urchin-like g-C3N4 nanocomposite for efficient degradation of cefixime[J]. Inorganic Chemistry Communications, 2020, 111:107565.
JIN J, LIANG Q, DING C Y, et al. Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4 nanosheets with improved photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 691:763-771.
WANG Y J, SHI R, LIN J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy & Environmental Science, 2011, 4(8):2922-2929.
NGUYENN M T H, NGUYEN Q T. Efficient refinement of a metal-organic framework MIL-53(Fe) by UV-vis irradiation in aqueous hydrogen peroxide solution[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 288:55-59.
LI X H, GUO W L, GAO X M, et al. Phosphotungstic acid encapsulated in MIL-53(Fe) as efficient visible-light photocatalyst for rhodamine B degradation[J]. Environmental Progress & Sustainable Energy, 2017, 36(5):1342-1350.
MIAO S C, ZHA Z X, LI Y, et al. Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate:Photocatalytic performance and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 280:111862.
谢治杰, 冯义平, 张钱新,等. Z型MoO3/g-C3N4复合催化剂用于可见光降解萘普生的机制研究[J]. 环境化学,2019,38(8):1724-1734. XIE Z J, FENG Y P, ZHANG Q X, et al. Photocatalytic degradation mechanism of naproxen using Z-scheme MoO3/g-C3N4 under visiblelight irradiation[J]. Environmental Chemistry, 2019, 38(8):1724-1734(in Chinese).
XIN Y N, HUANG Y, LIN K, et al. Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production[J]. Science Bulletin, 2018, 63(10):601-608.