den Braver-Sewradj S P, van Spronsen R, Hessel E V S. Substitution of bisphenol A:A review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances[J]. Critical Reviews in Toxicology, 2020, 50(2):128-147
|
Yan Z Y, Liu Y H, Yan K, et al. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes:Occurrence, distribution, source apportionment, and ecological and human health risk[J]. Chemosphere, 2017, 184:318-328
|
Liu Y H, Zhang S H, Song N H, et al. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake):Implications for ecological and human health risk[J]. Science of the Total Environment, 2017, 599-600:1090-1098
|
Liao C Y, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19):4655-4662
|
Cunha S C, Almeida C, Mendes E, et al. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry[J]. Food Additives & Contaminants:Part A, 2011, 28(4):513-526
|
Fattore M, Russo G, Barbato F, et al. Monitoring of bisphenols in canned tuna from Italian markets[J]. Food and Chemical Toxicology, 2015, 83:68-75
|
Liao C Y, Kannan K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States[J]. Archives of Environmental Contamination and Toxicology, 2014, 67(1):50-59
|
Cunha S C, Fernandes J O. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS)[J]. Talanta, 2010, 83(1):117-125
|
Cobellis L, Colacurci N, Trabucco E, et al. Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women[J]. Biomedical Chromatography:BMC, 2009, 23(11):1186-1190
|
Chang B V, Liu J H, Liao C S. Aerobic degradation of bisphenol-A and its derivatives in river sediment[J]. Environmental Technology, 2014, 35(4):416-424
|
Ike M, Chen M Y, Danzl E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology, 2006, 53(6):153-159
|
Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds[J]. Toxicological Sciences:an Official Journal of the Society of Toxicology, 2005, 84(2):249-259
|
Yang X H, Liu H H, Yang Q, et al. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships[J]. Chemosphere, 2016, 163:373-381
|
Ullah A, Pirzada M, Jahan S, et al. Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats:A focus on the possible hormonal mode of action[J]. Food and Chemical Toxicology, 2018, 121:24-36
|
Yang Q, Yang X H, Liu J N, et al. Exposure to bisphenol B disrupts steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Water, Air, & Soil Pollution, 2017, 228(3):1-12
|
Scholz S, Klüver N. Effects of endocrine disrupters on sexual, gonadal development in fish[J]. Sexual Development, 2009, 3(2-3):136-151
|
Crain D A, Eriksen M, Iguchi T, et al. An ecological assessment of bisphenol-A:Evidence from comparative biology[J]. Reproductive Toxicology, 2007, 24(2):225-239
|
Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20(2):297-308
|
Naderi M, Wong M Y, Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148:195-203
|
Hill R L Jr, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio):Ⅰ. Effects on sex ratio and breeding success[J]. Aquatic Toxicology, 2003, 63(4):417-429
|
陈玫宏, 郭敏, 徐怀洲, 等. 太湖表层水体及沉积物中双酚A类似物的分布特征及潜在风险[J]. 环境科学, 2017, 38(7):2793-2800
Chen M H, Guo M, Xu H Z, et al. Distribution characteristics and potential risk of bisphenol analogues in surface water and sediments of Lake Taihu[J]. Environmental Science, 2017, 38(7):2793-2800(in Chinese)
|
Ji K, Hong S, Kho Y, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science & Technology, 2013, 47(15):8793-8800
|
Yang Q, Yang X H, Liu J N, et al. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2018, 210:44-56
|
Scholz S, Klüver N. Effects of endocrine disrupters on sexual, gonadal development in fish[J]. Sexual Development, 2009, 3(2-3):136-151
|
Guiguen Y, Fostier A, Piferrer F, et al. Ovarian aromatase and estrogens:A pivotal role for gonadal sex differentiation and sex change in fish[J]. General and Comparative Endocrinology, 2010, 165(3):352-366
|
von Hofsten J, Olsson P E. Zebrafish sex determination and differentiation:Involvement of FTZ-F1 genes[J]. Reproductive Biology and Endocrinology, 2005, 3:63
|
Webster K A, Schach U, Ordaz A, et al. Dmrt1 is necessary for male sexual development in zebrafish[J]. Developmental Biology, 2017, 422(1):33-46
|
Rodríguez-Marí A, Yan Y L, Bremiller R A, et al. Characterization and expression pattern of zebrafish Anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development[J]. Gene Expression Patterns:GEP, 2005, 5(5):655-667
|
Leet J K, Gall H E, Sepúlveda M S. A review of studies on androgen and estrogen exposure in fish early life stages:Effects on gene and hormonal control of sexual differentiation[J]. Journal of Applied Toxicology, 2011, 31(5):379-398
|
Schulz R W, Bogerd J, Male R, et al. Estrogen-induced alterations in amh and dmrt1 expression signal for disruption in male sexual development in the zebrafish[J]. Environmental Science & Technology, 2007, 41(17):6305-6310
|
Wang D S, Zhou L Y, Kobayashi T, et al. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia[J]. Endocrinology, 2010, 151(3):1331-1340
|
Chai C, Chan W K. Developmental expression of a novel Ftz-F1 homologue, ff1b (NR5A4), in the zebrafish Danio rerio[J]. Mechanisms of Development, 2000, 91(1-2):421-426
|
Siegfried K R. In search of determinants:Gene expression during gonadal sex differentiation[J]. Journal of Fish Biology, 2010, 76(8):1879-1902
|
Cluzet V, Devillers M M, Petit F, et al. Aberrant granulosa cell-fate related to inactivated p53/Rb signaling contributes to granulosa cell tumors and to FOXL2 downregulation in the mouse ovary[J]. Oncogene, 2020, 39(9):1875-1890
|
Zhang X, Gao L, Yang K, et al. Monocrotophos pesticide modulates the expression of sexual differentiation genes and causes phenotypic feminization in zebrafish (Danio rerio)[J]. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 2013, 157(1):33-40
|