International Energy Agency. Global Energy Review 2021[R]. Paris: International Energy Agency, 2021
|
Landschützer P, Gruber N, Bakker D C E, et al. Recent variability of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2014, 28(9): 927-949
|
Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681-686
|
Xu H T, Li L A, Wang Y J, et al. Differential physiological response of marine and freshwater microalgae to polystyrene microplastics[J]. Journal of Hazardous Materials, 2023, 448: 130814
|
Li S N, Li X, Ho S H. How to enhance carbon capture by evolution of microalgal photosynthesis?[J]. Separation and Purification Technology, 2022, 291: 120951
|
Trimborn S, Thoms S, Brenneis T, et al. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica[J]. Physiologia Plantarum, 2017, 160(2): 155-170
|
邹定辉, 陈雄文. 高浓度CO2对条浒苔(Enteromorpha clathrata)生长和一些生理生化特征的影响[J]. 海洋通报, 2002, 21(5): 38-45
Zou D H, Chen X W. Effects of elevated CO2 concentration on growth and some physiological and biochemical traits in Enteromorpha clathrata (Chlorophyta)[J]. Marine Science Bulleten, 2002, 21(5): 38-45(in Chinese)
|
Hu S X, Zhou B, Wang Y, et al. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi[J]. PLoS One, 2017, 12(8): e0183289
|
Li H X, Xu T P, Ma J, et al. Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature[J]. Biogeosciences, 2021, 18(4): 1439-1449
|
陈斌斌. 海洋酸化背景下经济海藻龙须菜与坛紫菜的生物学特性[D]. 广州: 华南理工大学, 2015: 47-54 Chen B B. Biological adaptation of Gracilaria lemaneiformis and Pyropia haitanensis affected by ocean acidification[D]. Guangzhou: South China University of Technology, 2015: 47
-54(in Chinese)
|
Raven J A. Limits on growth rates[J]. Nature, 1993, 361: 209-210
|
Heureux A M C, Young J N, Whitney S M, et al. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae[J]. Journal of Experimental Botany, 2017, 68(14): 3959-3969
|
Raven J A, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms[J]. Journal of Experimental Botany, 2017, 68(14): 3701-3716
|
Shi D L, Hong H Z, Su X, et al. The physiological response of marine diatoms to ocean acidification: Differential roles of seawater pCO2 and pH[J]. Journal of Phycology, 2019, 55(3): 521-533
|
Chen X W, Gao K S. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum[J]. Chinese Science Bulletin, 2003, 48(23): 2616-2620
|
Zoccola D, Innocenti A, Bertucci A, et al. Coral carbonic anhydrases: Regulation by ocean acidification[J]. Marine Drugs, 2016, 14(6): 109
|
Qiu B S, Liu J Y. Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition[J]. Plant, Cell & Environment, 2004, 27(12): 1447-1458
|
Paine E R, Britton D, Schmid M, et al. No effect of ocean acidification on growth, photosynthesis, or dissolved organic carbon release by three temperate seaweeds with different dissolved inorganic carbon uptake strategies[J]. ICES Journal of Marine Science, 2023, 80(2): 272-281
|
Hennon G M, Quay P, Morales R L, et al. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat[J]. Journal of Phycology, 2014, 50(2): 243-253
|
郝爽. 海洋酸化对微小亚历山大藻产毒的影响和调控机制初探[D]. 济南: 山东大学, 2021: 27-41 Hao S. Study on the effect of ocean acidification on the toxin production of Alexandrium parvum and its regulation mechanism[D]. Jinan: Shandong University, 2021: 27
-41(in Chinese)
|
范佳乐, 李富田, 徐军田. 海水酸化和碱化对斑点海链藻光合生理特性的影响[J]. 海洋学报, 2020, 42(12): 62-71
Fan J L, Li F T, Xu J T. Effect of seawater acidification and alkalization on photosynthetic physiology of Thalassiosira punctigera[J]. Haiyang Xuebao, 2020, 42(12): 62-71(in Chinese)
|
郑伟, 钟志海, 杨梓, 等. 大气CO2增加对不同生长光强下龙须菜光合生理特性的影响[J]. 生态学报, 2014, 34(24): 7293-7299
Zheng W, Zhong Z H, Yang Z, et al. Effects of elevated CO2 concentration on the photosynthetic physiological characteristics of Gracilaria lemaneiformis grown under different light levels[J]. Acta Ecologica Sinica, 2014, 34(24): 7293-7299(in Chinese)
|
常思伟. 区分海洋酸化过程中二氧化碳分压上升和pH下降对束毛藻的影响及机理初探[D]. 厦门: 厦门大学, 2017: 41-42 Chang S W. Dissecting the effect of pCO2 and pH on Trichodesmium IMS 101
and its mechanisms[D]. Xiamen: Xiamen University, 2017: 41-42(in Chinese)
|
Kottmeier D M, Rokitta S D, Rost B. H+-driven increase in CO2 uptake and decrease in HCO3- uptake explain coccolithophores' acclimation responses to ocean acidification[J]. Limnology and Oceanography, 2016, 61(6): 2045-2057
|
Feng Y Y, Roleda M Y, Armstrong E, et al. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi[J]. Global Change Biology, 2020, 26(10): 5630-5645
|
Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407(6802): 364-367
|
韦章良, 莫嘉豪, 胡群菊, 等. 不同光照强度下仙掌藻(Halimeda opuntia)对海洋酸化的生理响应[J]. 海洋通报, 2019, 38(5): 574-584
Wei Z L, Mo J H, Hu Q J, et al. The physiological performance of the calcifying green macroalga Halimeda opuntia in response to ocean acidification with irradiance variability[J]. Marine Science Bulletin, 2019, 38(5): 574-584(in Chinese)
|
Diner R E, Benner I, Passow U, et al. Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus[J]. Marine Biology, 2015, 162(6): 1287-1305
|
Iglesias-Rodriguez M D, Halloran P R, Rickaby R E, et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320(5874): 336-340
|
Shi D L, Xu Y K, Morel F M M. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth[J]. Biogeosciences, 2009, 6(7): 1199-1207
|
Benner I, Diner R E, Lefebvre S C, et al. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1627): 20130049
|
Lohbeck K T, Riebesell U, Reusch T B H. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification[J]. Proceedings Biological Sciences, 2014, 281(1786): 20140003
|
Fiorini S, Middelburg J J, Gattuso J P. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra[J]. Aquatic Microbial Ecology, 2011, 64(3): 221-232
|
González C P, Edding M, Tala F, et al. Exposure time modulates the effects of climate change-related stressors on fertile sporophytes and early-life stage performance of a habitat-forming kelp species[J]. Environmental Pollution, 2021, 286: 117224
|
Roleda M Y, Morris J N, McGraw C M, et al. Ocean acidification and seaweed reproduction: Increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae)[J]. Global Change Biology, 2012, 18(3): 854-864
|
Gaitán-Espitia J D, Hancock J R, Padilla-Gamiño J L, et al. Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera[J]. Journal of Experimental Marine Biology and Ecology, 2014, 457: 51-58
|
Xu D, Wang D S, Li B, et al. Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development[J]. Environmental Science & Technology, 2015, 49(6): 3548-3556
|
Ragazzola F, Foster L C, Form A, et al. Ocean acidification weakens the structural integrity of coralline algae[J]. Global Change Biology, 2012, 18(9): 2804-2812
|
González C P, Edding M, Torres R, et al. Increased temperature but not pCO2 levels affect early developmental and reproductive traits of the economically important habitat-forming kelp Lessonia trabeculata[J]. Marine Pollution Bulletin, 2018, 135: 694-703
|
Redmond S. Effects of increasing temperature and ocean acidification on the microstages of two populations of Saccharina latissima in the northwest Atlantic[D]. New Britain: University of Connecticut, 2013: 1-51
|
Bermúdez R, Feng Y Y, Roleda M Y, et al. Long-term conditioning to elevated pCO2 and warming influences the fatty and amino acid composition of the diatom Cylindrotheca fusiformis[J]. PLoS One, 2015, 10(5): e0123945
|
Moghimifam R, Niknam V, Ebrahimzadeh H, et al. The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33)[J]. Journal of Applied Phycology, 2020, 32(1): 175-187
|
Tang D H, Han W, Li P L, et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J]. Bioresource Technology, 2011, 102(3): 3071-3076
|
Wang X W, Liang J R, Luo C S, et al. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels[J]. Bioresource Technology, 2014, 161: 124-130
|
Liang C W, Zhang Y F, Wang L, et al. Features of metabolic regulation revealed by transcriptomic adaptions driven by long-term elevated pCO2 in Chaetoceros muelleri[J]. Phycological Research, 2020, 68(3): 236-248
|
Adjout R, Mouget J L, Pruvost J, et al. Effects of temperature, irradiance, and pH on the growth and biochemical composition of Haslea ostrearia batch-cultured in an airlift plan-photobioreactor[J]. Applied Microbiology and Biotechnology, 2022, 106(13-16): 5233-5247
|
Qiu R H, Gao S, Lopez P A, et al. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana[J]. Algal Research, 2017, 28: 192-199
|
Ogbonda K H, Aminigo R E, Abu G O. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp.[J]. Bioresource Technology, 2007, 98(11): 2207-2211
|
Khalil Z I, Asker M M, El-Sayed S, et al. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea [J]. World Journal of Microbiology & Biotechnology, 2010, 26(7): 1225-1231
|
杨英. CO2浓度升高对微藻类生长和光合作用影响的研究[D]. 汕头: 汕头大学, 2000: 41-45 Yang Y. Effects of elevated CO2 concentration on growth and photosynthesis of microalgae[D]. Shantou: Shantou University, 2000
: 41-45(in Chinese)
|
夏建荣, 高坤山. 不同CO2浓度下培养的蛋白核小球藻细胞结构的变化[J]. 武汉植物学研究, 2002, 20(5): 403-404
Xia J R, Gao K S. Change of cell structure of Chlorella pyrenoidosa grown under different CO2 concentration[J]. Journal of Wuhan Botanical Research, 2002, 20(5): 403-404(in Chinese)
|
Miyachi S, Tsuzuki M, Maruyama I, et al. Effects of CO2 concentration during growth on the intracellular structure of Chlorella and Scenedesmus (Chlorophyta)[J]. Journal of Phycology, 1986, 22(3): 313-319
|
Stefanov M A, Rashkov G D, Yotsova E K, et al. Impact of salinity on the energy transfer between pigment-protein complexes in photosynthetic apparatus, functions of the oxygen-evolving complex and photochemical activities of photosystem Ⅱ and photosystem Ⅰ in two Paulownia lines[J]. International Journal of Molecular Sciences, 2023, 24(4): 3108
|
王璐. 水体酸化对几种微藻显微结构和营养成分的影响[D]. 青岛: 青岛科技大学, 2020: 21-22 Wang L. Effects of water acidification on microstructure and nutritional components of several microalgae[D]. Qingdao: Qingdao University of Science & Technology, 2020: 21
-22(in Chinese)
|
Kumar A, Castellano I, Patti F P, et al. Molecular response of Sargassum vulgare to acidification at volcanic CO2 vents: Insights from de novo transcriptomic analysis[J]. Molecular Ecology, 2017, 26(8): 2276-2290
|
Ye X, Chen J N, Hu C Y, et al. Promotion of the rapid growth in Haematococcus pluvialis under 0.16% CO2 condition revealed by transcriptome and metabolomic analysis[J]. Journal of Plant Growth Regulation, 2020, 39(3): 1177-1190
|
Tan Y H, Poong S W, Yang C H, et al. Transcriptomic analysis reveals distinct mechanisms of adaptation of a polar picophytoplankter under ocean acidification conditions[J]. Marine Environmental Research, 2022, 182: 105782
|
Liang C W, Zhang Y F, Gu Z P, et al. Elevated pCO2 induced physiological, molecular and metabolic changes in Nannochloropsis oceanica and its effects on trophic transfer[J]. Frontiers in Marine Science, 2022, 9: 863262
|
Huang B, Qu G P, He Y L, et al. Study on high-CO2 tolerant Dunaliella salina and its mechanism via transcriptomic analysis[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1086357
|
Sasaki T, Pronina N, Maeshima M, et al. Development of vacuoles and vacuolar H+-ATPase activity under extremely high CO2 conditions in Chlorococcum littorale cells[J]. Plant Biology, 1999, 1(1): 68-75
|
Dietz K J, Tavakoli N, Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. Journal of Experimental Botany, 2001, 52(363): 1969-1980
|
Rokitta S D, John U, Rost B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi[J]. PLoS One, 2012, 7(12): e52212
|
Thangaraj S, Sun J. Ocean warming and acidification affect the transitional C∶N∶P ratio and macromolecular accumulation in the harmful raphidophyte Heterosigma akashiwo[J]. Communications Biology, 2023, 6(1): 151
|
Liu L, Zou D H, Jiang H, et al. Effects of increased CO2 and temperature on the growth and photosynthesis in the marine macroalga Gracilaria lemaneiformis from the coastal waters of South China[J]. Journal of Applied Phycology, 2018, 30(2): 1271-1280
|
Nagao R, Ueno Y, Akimoto S, et al. Effects of CO2 and temperature on photosynthetic performance in the diatom Chaetoceros gracilis[J]. Photosynthesis Research, 2020, 146(1-3): 189-195
|
Thangaraj S, Sun J. The biotechnological potential of the marine diatom Skeletonema dohrnii to the elevated temperature and pCO2 concentration[J]. Marine Drugs, 2020, 18(5): 259
|
Fu F X, Warner M E, Zhang Y H, et al. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria)[J]. Journal of Phycology, 2007, 43(3): 485-496
|
黄征征, 黄旭雄, 严佳琦, 等. 生长阶段及温度对微藻细胞总ATP酶活性的影响[J]. 海洋渔业, 2011, 33(2): 181-186
Huang Z Z, Huang X X, Yan J Q, et al. Effects of growth phase and temperature on the total ATPase activity of microalgae[J]. Marine Fisheries, 2011, 33(2): 181-186(in Chinese)
|
Passow U, Laws E A. Ocean acidification as one of multiple stressors: Growth response of Thalassiosira weissflogii (diatom) under temperature and light stress[J]. Marine Ecology Progress Series, 2015, 541: 75-90
|
Rastogi R P, Singh S P, Häder D P, et al. Ultraviolet-B-induced DNA damage and photorepair in the Cyanobacterium Anabaena variabilis PCC 7937[J]. Environmental and Experimental Botany, 2011, 74: 280-288
|
Gao K S, Ruan Z X, Villafañe V E, et al. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi[J]. Limnology and Oceanography, 2009, 54(6): 1855-1862
|
Li F T, Li H X, Xu T P, et al. Seawater acidification exacerbates the negative effects of UVR on the growth of the bloom-forming diatom Skeletonema costatum [J]. Frontiers in Marine Science, 2022, 9: 905255
|
Chen S W, Gao K S. Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae)[J]. Hydrobiologia, 2011, 675(1): 105-117
|
García-Gómez C, Mata M T, Van Breusegem F, et al. Low-steady-state metabolism induced by elevated CO2 increases resilience to UV radiation in the unicellular green-algae Dunaliella tertiolecta[J]. Environmental and Experimental Botany, 2016, 132: 163-174
|
Ma J, Wang W, Liu X Y, et al. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification[J]. Environmental Science and Pollution Research International, 2020, 27(3): 3202-3212
|
de Orte M R, Sarmiento A M, Basallote M D, et al. Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations[J]. The Science of the Total Environment, 2014, 470-471: 356-363
|
Dong F, Wang P, Qian W, et al. Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum[J]. Environmental Pollution, 2020, 259: 113850
|
Xu D, Huang S J, Fan X, et al. Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana[J]. Frontiers in Microbiology, 2022, 13: 1113388
|
Payán M C, Verbinnen B, Galan B, et al. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment[J]. Environmental Pollution, 2012, 162: 29-39
|
Millero F, Woosley R, DiTrolio B, et al. Effect of ocean acidification on the speciation of metals in seawater[J]. Oceanography, 2009, 22(4): 72-85
|
Xu T P, Cao J Y, Qian R, et al. Ocean acidification exacerbates copper toxicity in both juvenile and adult stages of the green tide alga Ulva linza[J]. Marine Environmental Research, 2021, 170: 105447
|
Gao G, Liu Y M, Li X S, et al. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera[J]. Environmental and Experimental Botany, 2017, 135: 63-72
|
陈灿, 杨黎彬, 周雪飞. 纳米材料对水环境中微藻毒性的效应及机理研究进展[J]. 净水技术, 2022, 41(5): 5-13
Chen C, Yang L B, Zhou X F. Research progress of effect and mechanism of nanomaterials on microalgae toxicity in water environment[J]. Water Purification Technology, 2022, 41(5): 5-13(in Chinese)
|
Sjollema S B, Redondo-Hasselerharm P, Leslie H A, et al. Do plastic particles affect microalgal photosynthesis and growth?[J]. Aquatic Toxicology, 2016, 170: 259-261
|
Fotopoulou K N, Karapanagioti H K. Surface properties of beached plastic pellets[J]. Marine Environmental Research, 2012, 81: 70-77
|
Ren Y D, Jia Z H, Liu Y J, et al. Elevated pCO2 alleviates the toxic effects of polystyrene nanoparticles on the marine microalga Nannochloropsis oceanica[J]. The Science of the Total Environment, 2023, 895: 164985
|
Lagarde F, Olivier O, Zanella M, et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type[J]. Environmental Pollution, 2016, 215: 331-339
|