Zheng D, Wang N, Wang X M, et al. Effects of the interaction of TiO2 nanoparticles with bisphenol A on their physicochemical properties and in vitro toxicity[J]. Journal of Hazardous Materials, 2012, 199-200:426-432
|
Yan J, Lin B C, Hu C L, et al. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos[J]. Nanoscale Research Letters, 2014, 9(1):406
|
Serdar B, LeBlanc W G, Norris J M, et al. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures:A cross-sectional assessment of the NHANES 2003-2004 data[J]. Environmental Health, 2014, 13:114
|
Dong H, Su C Y, Xia X M, et al. Polychlorinated biphenyl quinone-induced genotoxicity, oxidative DNA damage and γ-H2AX formation in HepG2 cells[J]. Chemico-Biological Interactions, 2014, 212:47-55
|
Attia S M, Ahmad S F, Okash R M, et al. Aroclor 1254-induced genotoxicity in male gonads through oxidatively damaged DNA and inhibition of DNA repair gene expression[J]. Mutagenesis, 2014, 29(5):379-384
|
Liu H M, Amy G. Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater[J]. Environmental Science & Technology, 1993, 27(8):1553-1562
|
Ottofuelling S, Kammer F V D, Hofmann T. Nanoparticles in the aquatic environment-aggregation behavior of TiO2nanoparticles studied in a simplified aqueous test matrix (SAM)[J]. Journal of Geophysical Research, 2007, 9:08876
|
Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp. and Chlorella sp.[J]. Journal of Nanoparticle Research, 2011, 13(8):3287-3299
|
Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14):4477-4487
|
Blum D J W, Speece R E. Determining chemical toxicity to aquatic species[J]. Environmental Science & Technology, 1990, 24(3):284-293
|
Li X, Zhang T, Min X M, et al. Toxicity of aromatic compounds to Tetrahymena estimated by microcalorimetry and QSAR[J]. Aquatic Toxicology, 2010, 98(4):322-327
|
刘畅, 吴文娟, 李建宏, 等. 不同光强对阿特拉津和百草枯藻类毒性的影响[J]. 环境科学学报, 2014, 34(5):1339-1343
Liu C, Wu W J, Li J H, et al. Effects of different light intensities on the toxicities of atrazine and paraquat to algae[J]. Acta Scientiae Circumstantiae, 2014, 34(5):1339-1343(in Chinese)
|
Wang Z, Wang S, Peijnenburg W J G M. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13
|
Long Z F, Ji J, Yang K, et al. Systematic and quantitative investigation of the mechanism of carbon nanotubes toxicity toward algae[J]. Environmental Science & Technology, 2012, 46(15):8458-8466
|
Zhang L Q, Lei C, Chen J J, et al. Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae[J]. Carbon, 2015, 83:198-207
|
Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11):1388-1394
|
Cui Y, Liu W, Xie W P, et al. Investigation of the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line[J]. International Journal of Environmental Research and Public Health, 2015, 12(12):15673-15682
|
Fan J H, Cui Y B, Zhou Y, et al. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription[J]. Bioresource Technology, 2014, 164:214-220
|
Sun X, Xu N J, Jiang L Z, et al. Gene expression profiles of the heterotrophic microalga Chlorella pyrenoidosa F-9[J]. Genetics and Molecular Research, 2014, 13(4):8411-8420
|
Zhang S, Deng R, Lin D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology, 2017, 11(9-10):1115-1126
|
Mishra S, Srivastava S, Tripathi R D, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiology and Biochemistry, 2006, 44(1):25-37
|
Phyu Y L, Palmer C G, Warne M S J, et al. Assessing the chronic toxicity of atrazine, permethrin, and chlorothalonil to the cladoceran Ceriodaphnia cf. dubia in laboratory and natural river water[J]. Archives of Environmental Contamination and Toxicology, 2013, 64(3):419-426
|
Kabra A N, Ji M K, Choi J, et al. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana[J]. Environmental Science and Pollution Research, 2014, 21(21):12270-12278
|
Romih T, Jemec A, Novak S, et al. FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles[J]. Nanotoxicology, 2016, 10(4):462-470
|
Yu C X, Irudayaraj J. Spectroscopic characterization of microorganisms by Fourier transform infrared microspectroscopy[J]. Biopolymers, 2005, 77(6):368-377
|
Lu W D, Alam M A, Pan Y, et al. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production[J]. Bioresource Technology, 2016, 218:123-128
|
Gelfand P, Smith R J, Stavitski E, et al. Characterization of protein structural changes in living cells using time-lapsed FTIR imaging[J]. Analytical Chemistry, 2015, 87(12):6025-6031
|
da Silva Ferreira V, ConzFerreira M E, Lima L M T R, et al. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria[J]. Enzyme and Microbial Technology, 2017, 97:114-121
|
Zhao J, Wang Z Y, Dai Y H, et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research, 2013, 47(12):4169-4178
|
Zhu X D, Wang Y J, Qin W X, et al. Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO2 catalyst[J]. Chemosphere, 2016, 144:628-634
|
Schmitt D, Kumke M, Seibel F, et al. The influence of natural organic matter (NOM) on the desorption kinetics of pyrene and naphthalene from quartz[J]. Chemosphere, 1999, 38(12):2807-2824
|
Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4):1461-1468
|
冀静. 腐殖酸对纳米颗粒藻类毒性的影响及机理[D]. 杭州:浙江大学, 2011:32-34 Ji J. The effect and its mechanism of humic acid on the algal toxicity of nanoparticles[D]. Hangzhou:Zhejiang University, 2011:32
-34(in Chinese)
|