LOGAN B E. Microbial fuel cells[M]. John Wiley & Son, Hoboken, New Jerseys, 2008.
LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192.
刘若男, 赵博玮, 岳秀萍. 曝气量对微生物燃料电池脱氮的影响[J]. 环境化学, 2018, 37(6):1317-1326. LIU R N, ZHAO B W, YUE X P. Effect of aeration rate on nitrogen removal by microbial fuel cells[J].Environmental Chemistry, 2018, 37(6):1317-1326(in Chinese).
POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London, 1911, 84(571):260-276.
SINGH L, WAHID Z A. Methods for enhancing bio-hydrogen production from biological process:A review[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1):70-80.
JIANG Y, LIANG P, LIU P, et al. A cathode-shared microbial fuel cell sensor array forwater alert system[J]. International Journal of Hydrogen Energy, 2017, 42(7):4342-4328.
WANG H, LUO H, FALLGREN P H, et al. Bioelectrochemical system platform for sustainable environmental remediation and energy generation[J]. Biotechnology Advances, 2015, 33(3-4):317-334.
RASCHITOR A, SOREANU G, FERNANDEZ-MARCHANTE C M, et al. Bioelectro-Claus processes using MFC technology:Influence of co-substrate[J]. Bioresource Technology, 2015, 189:94-98.
FAN Y, HU H, LIU H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. Journal of Power Sources, 2007, 171(2):348-354.
LIEW K B, WAN R W D, GHASEMI M, et al. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells:A review[J]. International Journal of Hydrogen Energy, 2014, 39(10):4870-4883.
SAJANA T K, GHANGREKAR M M, MITRA A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water[J]. Aquacultural Engineering, 2014, 61(8):17-26.
顾熠澐. 微生物燃料电池输出功率影响因素综述[J]. 水电与新能源, 2014, 28(2):69-74. GU Y Y. Output power and its influencing factors of microbial fuel cells:A review[J]. Hydropower and New Energy, 2014, 28(2):69-74(in Chinese).
SCHR DER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Physical Chemistry Chemical Physics, 2007, 9(21):2619-2629.
KUMAR R, SINGH L, WAHID Z A, et al. Exoelectrogens in microbial fuel cells toward bioelectricity generation:A review[J]. International Journal of Energy Research, 2015, 39(8):1048-1067.
PARK T J, DING W, CHENG S, et al. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp.)[J]. Amb Express, 2014, 4(1):1-8.
CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232.
REZAEI F, XING D, WAGNER R C, et al. Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell[J]. Applied and Environmental Microbiology, 2009, 75(11):3673-3678.
TOH H, SHARMA V K, OSHIMA K, et al. Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell[J]. Journal of Bacteriology, 2011, 193(22):6411-6412.
BOND D R, HOLMES D E, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554):483-485.
DENG H, XUE H, ZHONG W. A novel exoelectrogenic bacterium phylogenetically related to clostridium sporogenes isolated from copper contaminated soil[J]. Electroanalysis, 2017, 29(5):1294-1300.
XU S, LIU H. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell[J]. Journal of Applied Microbiology, 2011, 111(5):1108-1115.
TOTH E M, KEKI Z, BOHUS V, et al. Aquipuribacter hungaricus gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a power plant[J]. International Journal of Systematic & Evolutionary Microbiology, 2012, 62(Pt 3):556-562.
LOVLEY D R, UEKI T, ZHANG T, et al. Geobacter:The microbe electric's physiology, ecology, and practical applications[J]. Advances in Microbial Physiology, 2011, 59:1-100.
刘鹏程, 朱雯雯, 肖翔. 产电微生物Shewanella菌厌氧呼吸代谢网络研究进展[J]. 微生物学通报, 2015, 42(11):2238-2244. LIU P C, ZHU W W, XIAO X. Metabolic networks of electricigens Shewanella for anaerobic respiration[J]. Microbiology China, 2015, 42(11):2238-2244(in Chinese).
HEIDELBERG J F, PAULSEN I T, NELSON K E, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nature Biotechnology, 2002, 20(11):1118-1123.
BREUER M, ROSSO K M, BLUMBERGER J, et al. Multi-haem cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities[J]. Journal of the Royal Society Interface, 2015, 12(102):1-27.
LI F, LI Y, SUN L M, et al. Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1[J]. Acs Synthetic Biology, 2018, 7(3):885-895.
SAFFARINI D A, BLUMERMAN S L, MANSOORABADI K J. Role of menaquinones in Fe(Ⅲ) reduction by membrane fractions of Shewanella putrefaciens[J]. Journal of Bacteriology, 2002, 184(3):846-848.
马晨, 周顺桂, 庄莉, 等微生物胞外呼吸电子传递机制研究进展[J]. 生态学报, 2011, 31(7):2008-2018. MA C, ZHOU S G, ZHUANG L, et al. Electron transfer mechanism of extracellular respiration:a review[J]. Acta Ecologica Sinica 2011, 31(7):2008-2018(in Chinese).
LIU Y, WANG Z, LIU J, et al. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA[J]. Environmental Microbiology Reports, 2014, 6(6):776-785.
SHI L, SQUIER T C, ZACHARA J M, et al. Respiration of metal (hydr)oxides by Shewanella and Geobacter:A key role for multihaem c-type cytochromes[J]. Molecular Microbiology, 2010, 65(1):12-20.
许杰龙, 周顺桂, 袁勇, 等. 有"生命"的电线:浅析微生物纳米导线电子传递机制及其应用[J]. 化学进展, 2012,24(9):1794-1800. XU J L, ZHOU S G, YUAN Y. Live Wire:A review on electron transfer mechanism and applications of microbial nanowires[J]. Progress in Chemistry, 2012, 24(9):1794-1800(in Chinese).
REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
GORBY YA, YANINA S, MCLEAN JS, et al. Electrically conductive bacterial nanowires produced by shewanella oneidensis strain mr-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30):11358-11363.
MALVANKAR N S, LOVLEY D R. Microbial nanowires:A new paradigm for biological electron transfer and bioelectronics[J]. Chemsuschem. 2012, 5(6):1039-1046.
LEUNG K M, WANGER G, EL-NAGGAR M Y, et al. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-Type, tunable electronic behavior[J]. Nano Letters, 2013, 13(6):2407-2411.
LEUNG K M, WANGER G, GUO Q, et al. Bacterial nanowires:conductive as silicon, soft as polymer[J]. Soft Matter, 2011, 7(14):6617-6621.
EL-NAGGAR M Y, GORBY Y A, XIA W, et al. The molecular density of states in bacterial nanowires[J]. Biophysical Journal, 2008, 95(1):L10-L12.
KOTLOSKI N J, GRALNICK J A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis[J]. Mbio, 2013, 4(1):169-172.
RABAEY K, BOON N, HOFTE M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005, 39(9):3401-3408.
FERAPONTOVA E, SCHMENGLER K, B RCHERS T, et al. Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold[J]. Biosensors & Bioelectronics, 2002, 17(11):953-963.
BABANOVA S, MATANOVIC I, CHAVEZ M S, et al. Role of quinones in electron transfer of PQQ-Glucose dehydrogenase anodes-mediation or orientation effect[J]. Journal of the American Chemical Society, 2015, 137(24):7754-7762.
MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10):3968-3973.
YOU L X, LIU L D, XIAO Y, et al. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1[J]. Bioelectrochemistry, 2018, 119; 196-202.
GRININGER M, STAUDT H, JOHANSSON P, et al. Dodecin is the key player in flavin homeostasis of archaea[J]. Journal of Biological Chemistry, 2009, 284(19):13068-13076.
刘利丹, 肖勇, 陈必链, 等. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11):1859-1866. LIU L D, XIAO Y, WU Y H. Electron transfer mediators in microbial electrochemical systems[J].Progress in Chemistry, 2014, 26(11):1859-1866(in Chinese).
马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12):1833-1840. MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer[J].Progress in Chemistry, 2015, 27(12):1833-1840(in Chinese).
HARRIS H W, GREENBERG E P. Electrokinesis is a microbial behavior that requires extracellular electron transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1):326-331.
KUMAR A, HSU H H, KAVANAGH P, et al. The ins and outs of microorganism-electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1(3):1-58.
FAPETU S, KESHAVARZ T, CLEMENTS M, et al. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst[J]. Biotechnology Letters, 2016, 38(9):1465-1473.
ZHENG T, XU Y S, YONG X Y, et al. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells[J]. Bioresource Technology, 2015, 197:416-421.
ZHANG Y, JIANG J, ZHAO Q, et al. Analysis of functional genomes from metagenomes:Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition[J]. Bioelectrochemistry, 2018, 119:59-67.
ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied & Environmental Microbiology, 2014, 80(15):4599-4605.
SUMMERS Z M, FOGARTY H E, LEANG C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009):1413-1415.
SCHAEFER A L, GREENBERG E P, OLIVER C M, et al. A new class of homoserine lactone quorum-sensing signals[J]. Nature, 2008, 454(7204):595-599.
PHAM T H, BOON N, AELTERMAN P, et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer[J]. Applied Microbiology & Biotechnology, 2008, 77(5):1119-1129.
周婷, 余林鹏, 符力, 等. 微生物直接电子传递:甲烷代谢古菌研究进展[J]. 应用与环境生物学报, 2018, 24(5):1032-1040. ZHOU T, YU L P, FU L, et al. Microbial direct electron transfer:advances in its study in the metabolism of methane by Archaea[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5):1032-1040(in Chinese).
HA P T, LINDEMANN S R, SHI L, et al. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer[J]. Nature Communications, 2017, 8:1-7.
HUANG L, LIU X, TANG J, et al. Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii [J]. Bioelectrochemistry, 2019, 127:21-25.
TERAVEST M A, ZAJDEL T J, AJO-FRANKLIN C M. The Mtr Pathway of Shewanella oneidensis MR-1 Couples Substrate Utilization to Current Production in Escherichia coli[J]. Chemelectrochem, 2015, 1(11):1874-1879.
FENG J, QIAN Y, WANG Z, et al. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway[J]. Journal of Biotechnology, 2018, 275:1-6.
SEKAR N, JAIN R, YAN Y, et al. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria[J]. Biotechnology & Bioengineering, 2016, 113(3):675-679.
SEKAR N, WANG J, ZHOU Y, et al. Role of respiratory terminal oxidases in the extracellular electron transfer ability of cyanobacteria[J]. Biotechnology & Bioengineering, 2018, 115(5):1361-1366.
LIN T, DING W, SUN L, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells[J]. Nano Energy, 2018, 50:639-648.
HAN S, GAO X, YING H, et al. NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells[J]. Green Chemistry, 2016, 18(8):2473-2478.
YONG X Y, FENG J, CHEN Y L, et al. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell[J]. Biosensors & Bioelectronics, 2014, 56(24):19-25.
LI F, LI Y, CAO Y, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis [J]. Nature Communications, 2018, 9:1-13.
CHEN M, ZHOU X, LIU X, et al. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles[J]. Biosensors & Bioelectronics, 2018, 108:20-26.
KIRCHHOFER N D, RENGERT Z D, DAHLQUIST F W, et al. A ferrocene-based conjugated oligoelectrolyte catalyzes bacterial electrode respiration[J]. Chem, 2017, 2(2):240-257.
DEPLANCHE K, BENNETT J A, MIKHEENKO I P, et al. Catalytic activity of biomass-supported Pd nanoparticles:Influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals[J]. Applied Catalysis B Environmental, 2014, 147:651-665.
NIU Z Y, JIA Y T, CHEN Y C, et al. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation[J]. Ecotoxicology & Environmental Safety, 2018, 161:356-363.
ISLAM M A, ETHIRAJ B, CHENG C K, et al. An insight of synergy between Pseudomonas aeruginosa and Klebsiella variicola in microbial fuel cell[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(3):4130-4137.
FERNANDO E, KESHAVARZ T, KYAZZE G. External resistance as a potential tool for influencing azo dye reductive decolourisation kinetics in microbial fuel cells[J]. International Biodeterioration & Biodegradation, 2014, 89(4):7-14.
LIU T, YU Y, LI D, et al. The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells[J]. RSC Advances, 2016, 6(24):20317-20323.
JUNG S, REGAN J M. Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells[J]. Applied and Environmental Microbiology, 2011, 77(2):564-571.
KIM H, KIM B, KIM J, et al. Electricity generation and microbial community in microbial fuel cell using low-pH distillery wastewater at different external resistances[J]. Journal of Biotechnology, 2014, 186:175-180.
MCLEAN J S, WANGER G, GORBY Y A, et al. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities[J]. Environmental Science & Technology, 2010, 44(7):2721-2727.
FLINT S H, BROOKS J D, BREMER P J. Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci[J]. Journal of Food Engineering, 2000, 43(4):235-242.
ZHAO C E, WANG W J, SUN D, et al. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells[J]. Chemistry-A European Journal, 2014, 20(23):7091-7097.
SUN D Z, YU Y Y, XIE R R, et al. In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems[J]. Biosensors & Bioelectronics, 2017, 87:195-202.
SUN J J, ZHAO H Z, YANG Q Z, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode:preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9):3041-3047.
SHARMA T, REDDY A L M, CHANDRA T S, et al. Development of carbon nanotubes and nanofluids based microbial fuel cell[J]. International Journal of Hydrogen Energy, 2008, 33(22):6749-6754.
ZHAO Y, NAKANISHI S, WATANABE K, et al. Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells[J]. Journal of Bioscience & Bioengineering, 2011, 112(1):63-66.
YUAN Y, KIM S H. Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output[J]. Bulletin-Korean Chemical Society, 2008, 29(29):168-172.
ZHANG Y, MO G, LI X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(13):5402-5407.
LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114(3):275-280.
LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14):5488-5593.
贾伯阳, 刘红. 微生物燃料电池隔膜材料分析[C]. 2010中国可再生能源科技发展大会论文集, 2010. JIA B Y, LIU H. Diaphragm material analysis of microbial fuel cell[C]. Proceedings of 2010 China technonogical development of renewable energy resource, 2010(in Chinese).
刘雷. 微生物燃料电池(MFCs)性能的影响因素及苯酚为底物的研究[D]. 扬州:扬州大学, 2013. LIU L. Factors affecting the performance of microbial fuel cells (MFCs) studies on phenol as substrate[D]. Yangzhou:Yangzhou University, 2013(in Chinese).
LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36(7):1653-1665.
CELMER D, OLESZKIEWICZ J A, CICEK N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater[J]. Water Research, 2008, 42(12):3057-3065.
VILAJELIU-PONS A, BANERAS L, PUIG S, et al. External resistances applied to MFC affect core microbiome and swine manure treatment efficiencies[J]. Plos One, 2016, 11(10):1-19.