吕怡兵, 谭丽, 滕恩江, 等. 我国大气背景点挥发性有机污染物的浓度水平与组成特征[J]. 环境化学, 2013, 32(5):726-733. LV Y B, TAN L, TENG E J, et al.Concentration levels and composition characteristics of VOCs at the background locations in China[J]. Environmental Chemistry, 2013, 32(5):726-733(in Chinese).
EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1-3):113-139.
王铁宇, 李奇锋, 吕永龙. 我国VOCs的排放特征及控制对策研究[J]. 环境科学, 2013, 34(12):4756-4763. WANG T Y, LI Q F, LV Y L. Characteristics and countermeasures of volatile organic compounds (VOCs) emission in China[J]. Environmental Science, 2013, 34(12):4756-4763(in Chinese).
MAHBUB P, AYOKO G A, GOONETILLEKE A, et al. Analysis of the build-up of semi and non volatile organic compounds on urban roads[J]. Water Research, 2011, 45(9):2835-2844.
COGGON M M, VERES P R, YUAN B, et al. Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass:fuel composition dependence and the variability of commonly used nitrile tracers[J]. Geophysical Research Letters, 2016, 43(18):9903-9912.
MA M D, HUANG H, CHEN C W, et al. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction[J]. Molecular Catalysis, 2018, 455:192-203.
HUANG Q Q, ZUO S F, ZHOU R X, et al. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. Applied Catalysis B:Environmental, 2010, 95(3-4):327-334.
钟依均, 刘泽菊, 朱波, 等. 含氮有机物在Pt/HM, Pd/HM和CuO/HM催化剂上的氧化降解[J]. 环境化学, 1997, 3(16):204-207. ZHONG Y J, LIU Z J, ZHU B,et al. Oxidation decomposition of nitrogencontaining compounds over Pt/HM,Pd/HM and CuO/HM catalysts[J]. Environmental Chemistry, 1997, 3(16):204-207(in Chinese).
LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14500-14508.
YANG S S, HUANG Q Q, ZHOU R X. Influence of interactions between chromium and cerium on catalytic performances of CrOx-CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine[J]. Chinese Science Bulletin, 2014, 59(31):3987-3992.
BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, et al. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. Journal of Catalysis, 2015, 325:145-155.
贾永芹, 张晓晶. MnOx催化剂用于甲苯催化氧化反应的研究[J]. 环境污染与防治, 2018, 40(5):518-520 , 526. JIA Y Q, ZHANG X J. Catalytic oxidation of toluene by MnOx catalysts[J]. Environmental Pollution & Control, 2018,40(5):518-520,526(in Chinese).
GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2010, 174(1-3):734-739.
LI W, ZHANG C, LI X, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO with NH3:Evaluation and characterization[J]. Chinese Journal of Catalysis, 2018, 39(10):1653-1663.
LIU L Z, ZHANG H B, JIA J P, et al. Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal[J]. Inorganic Chemistry, 2018, 57(14):8451-8457.
ZHOU X, LAI X, LIN T, et al. Preparation of a monolith MnOx-CeO2/La-Al2O3 catalyst and its properties for catalytic oxidation of toluene[J]. New Journal of Chemistry, 2018, 42(20):16875-16885.
LI L, LISHAN W, SIWEI P, et al. Effects of cerium on the selective catalytic reduction activity and structural properties of manganese oxides supported on Multi-walled carbon nanotubes catalysts[J]. Chinese Journal of Catalysis, 2013, 34:1087-1097.
XIE Y, LI C, ZHAO L, et al. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke[J]. Applied Surface Science, 2015, 333:59-67.
郭静, 李彩亭, 路培, 等. CeO2改性MnOx/Al2O3的低温SCR法脱硝性能及机制研究[J]. 环境科学, 2011, 32(8):2240-2246. GUO J, LI C T, LU P,et al.Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and Its mechanism at low temperature[J]. Environmental Science, 2011, 32(8):2240-2246(in Chinese).
CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B:Environmental, 2018, 224:825-835.
MORALES M R, YESTE M P, VIDAL H, et al. Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts:Influence of the amount and nature of Mn-Cu mixed oxide[J]. Fuel, 2017, 208:637-646.
WANG Z, QU Z P, QUAN X, et al. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method[J]. Applied Catalysis B:Environmental, 2013, 134-135:153-166.
ZHANG H, GU F N, LIU Q, et al. MnOx-CeO2 supported on a three-dimensional and networked SBA-15 monolith for NOx-assisted soot combustion[J]. RSC Advances, 2014,4:14879-14889.
LIAO Y N, FU M L, CHEN L M, et al. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catalysis Today, 2013, 216:220-228.