AMORIM C L, MAIA A S, MESQUITA R B, et al. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin[J]. Water Research, 2014, 50:101-113.
贾江雁, 李明利. 抗生素在环境中的迁移转化及生物效应研究进展[J]. 四川环境, 2011, 30(1):121-125. JIA J Y, LI M L. A review on antibiotics migration-transportation and biological effect in Environment[J]. Sichuan Environment, 2011, 30(1):121-125(in Chinese).
张翔宇, 李茹莹, 季民. 污水生物处理中抗生素的去除机制及影响因素[J]. 环境科学, 2018, 39(11):5276-5288. ZHANG X Y, LI R Y,JI M. Mechanisms and influencing factors of antibiotic removal in sewage biological treatment[J]. Environmental Science, 2018,39(11):5276-5288(in Chinese).
WATKINSON A, MURBY E, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8):2711-2723.
吕佳, 岳银玲, 张岚. 国内外饮用水消毒技术应用与优化研究进展[J]. 中国公共卫生, 2017, 33(3):428-432. LV J, YUE Y L, ZHANG L. Overseas and domestic research progress in application and optimization of drinking water disinfection technology[J]. Chinese Journal of Public Health, 2017, 33(3):428-462(in Chinese).
赵玉丽, 李杏放. 饮用水消毒副产物:化学特征与毒性[J]. 环境化学, 2011, 30(1):20-33. ZHAO Y L, LI X F. Division of analytical and environmental toxicology[J]. Environmental Chemistry, 2011, 30(1):20-33(in Chinese).
FENG Y, GUO Q, SHAO B. Cytotoxic comparision of macrolide antibiotics and their chlorinated disinfection byproduct mixtures[J]. Ecotoxicology and Environmental Safety, 2019, 182:109415.
RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J]. Mutation Research, 2007, 636:178-242.
SRIVASTAV A L, PATEL N, CHAUDHARY V K. Disinfection by-products in drinking water:Occurrence, toxicity and abatement[J]. Environmental Pollution, 2020,267:115474.
鲁金凤, 王斌, 廖洋, 等. 水环境中残留抗生素的消毒副产物问题最新研究进展[J]. 中国给水排水, 2020, 36(4):6-12. LU J F, WANG B, LIAO Y, et al. Latest research progress on the disinfection by-products of residual antibiotics in water environment[J]. China Water & Wastewater, 2020, 36(4):6-12(in Chinese)
WANG M, HELBLING D E. A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics[J]. Water Research, 2016, 102:241-251.
ESCHER B I, FENNER K. Recent advances in environmental risk assessment of transformation products[J]. Environmental Science & Technology, 2011, 45(9):3835-3847.
POSTIGO C, RICHARDSON S D. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment[J]. Journal of Hazardous Materials, 2014, 279:461-475.
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
LIU X, ZHANG G, LIU Y, et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China[J]. Environmental Pollution, 2019, 246:163-173.
CHAMBERLAIN E, ADAMS C. Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine[J]. Water Research, 2006, 40(13):2517-2526.
FU W, LI B, YANG J, et al. New insights into the chlorination of sulfonamide:Smiles-type rearrangement, desulfation, and product toxicity[J]. Chemical Engineering Journal, 2018, 331:785-793.
YANG Y, SHI J, YANG Y, et al. Transformation of sulfamethazine during the chlorination disinfection process:Transformation, kinetics, and toxicology assessment[J]. Journal of Environmental Sciences, 2019, 76:48-56.
NASSAR R, RIFAI A, TRIVELLA A, et al. Aqueous chlorination of sulfamethazine and sulfamethoxypyridazine:Kinetics and transformation products identification[J]. Journal of Mass Spectrometry, 2018, 53(7):614-623.
DONG F, LI C, HE G, et al. Kinetics and degradation pathway of sulfamethazine chlorination in pilot-scale water distribution systems[J]. Chemical Engineering Journal, 2017, 321:521-532.
LI X, SHI H, LI K, et al. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China[J]. Frontiers of Environmental Science & Engineering, 2014, 8(6):888-894.
LI B, ZHANG T. pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater[J]. Water Research, 2012, 46(11):3703-3713.
DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment- kinetics and mechanisms:A critical review[J]. Water Research, 2008, 42:13-51.
WANG X, LI Y, LI R, et al. Comparison of chlorination behaviors between norfloxacin and ofloxacin:Reaction kinetics, oxidation products and reaction pathways[J]. Chemosphere, 2019, 215:124-132.
YASSINE M H, RIFAI A, HOTEIT M, et al. Study of the degradation process of ofloxacin with free chlorine by using ESI-LCMSMS:Kinetic study, by-products formation pathways and fragmentation mechanisms[J]. Chemosphere, 2017, 189:46-54.
NAJJAR N H E, DEBORDE M, JOURNEL R, et al. Aqueous chlorination of levofloxacin:Kinetic and mechanistic study, transformation product identification and toxicity[J]. Water Research, 2013, 47(1):121-129.
CHEN H, JING L, TENG Y, et al. Characterization of antibiotics in a large-scale river system of China:Occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 2018, 618:409-418.
BARBOSA M O, MOREIRA N F F, RIBEIRO A R, et al. Occurrence and removal of organic micropollutants:An overview of the watch list of EU Decision 2015/495[J]. Water Research, 2016, 94:275-279.
GUO Q, DU Z, SHAO B. Simulation and experimental study on the mechanism of the chlorination of azithromycin[J]. Journal of Hazardous Materials, 2018, 359:31-39.
ZHANG Y, PAN Z, RONG C, et al. Transformation of antibacterial agent roxithromycin in sodium hypochlorite disinfection process of different water matrices[J]. Separation and Purification Technology, 2019, 212:528-535.
李威, 李佳熙, 李吉平,等. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(1):205-214. LI W, LI J X,LI J P, et al. Pollution characteristics of antibiotics in different environment media in China:A review[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2020, 44(1):205-214(in Chinese).
LI B, ZHANG T. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination[J]. Water Research, 2013, 47(9):2970-2982.
WANG P, HE Y L, HUANG C H. Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine[J]. Water Research, 2011, 45(4):1838-1846.
ZHOU S, SHAO Y, GAO N, et al. Chlorination and chloramination of tetracycline antibiotics:Disinfection by-products formation and influential factors[J]. Ecotoxicology and Environmental Safety, 2014, 107:30-35.
NETH N L K, CARLIN C M, KEEN O S. Doxycycline transformation and emergence of antibacterially active products during water disinfection with chlorine[J]. Environmental Science:Water Research & Technology, 2017, 3(6):1086-1094.
JIANG L, HU X, YIN D, et al. Occrrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828.
LI C, LUO F, DUAN H, et al. Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system[J]. Separation and Purification Technology, 2019, 211:564-570.
ZHANG Y, SHAO Y, GAO N, et al. Kinetics and by-products formation of chloramphenicol (CAP) using chlorination and photocatalytic oxidation[J]. Chemical Engineering Journal, 2018, 333:85-91.
ZHANG S, LIN T, CHEN W, et al. Degradation kinetics, byproducts formation and estimated toxicity of metronidazole (MNZ) during chlor (am) ination[J]. Chemosphere, 2019, 235:21-31.
DODD M C, HUANG C H. Aqueous chlorination of the antibacterial agent trimethoprim:Reaction kinetics and pathways[J]. Water Research, 2007, 41:647-655.
LI L, WEI D, WEI G, et al. Transformation of cefazolin during chlorination process:products, mechanism and genotoxicity assessment[J]. Journal of Hazardous Materials, 2013, 262:48-54.
DONG F, LI C, CRITTENDEN J, et al. Sulfadiazine destruction by chlorination in a pilot-scale water distribution system:Kinetics, pathway, and bacterial community structure[J]. Journal of Hazardous Materials, 2019, 366:88-97.
NASSAR R, MOKH S, RIFAI A, et al. Transformation of sulfaquinoxaline by chlorine and UV light in water:Kinetics and by-product identification[J]. Environmental Science and Pollution Research International, 2018, 25:34863-34872.
RONG C, SHAO Y, WANG Y, et al. Formation of disinfection byproducts from sulfamethoxazole during sodium hypochlorite disinfection of marine culture water[J]. Environmental Science and Pollution Research, 2018, 25:33196-33206.
ZHANG Y, RONG C, SONG Y, et al. Oxidation of the antibacterial agent norfloxacin during sodium hypochlorite disinfection of marine culture water[J]. Chemosphere, 2017, 182:245-254.
HE G, ZHANG T, ZHENG F, et al. Reaction of fleroxacin with chlorine and chlorine dioxide in drinking water distribution systems:Kinetics, transformation mechanisms and toxicity evaluations[J]. Chemical Engineering Journal, 2019, 374:1191-1203.
SONG D, LIU H, QIANG Z, et al. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method[J]. Water Research, 2014, 55:126-132.
ZHANG T Q, HE G L, DONG F L, et al. Chlorination of enoxacin (ENO) in the drinking water distribution system:Degradation, byproducts, and toxicity[J]. The Science of The Total Environment, 2019, 676:31-39.
GB 3838-2002地表水环境质量标准[S]. 2002. GB 3828-2002 Environmental quality standards for surface water[S]. 2002(in Chinese).
GB 18918-2002城镇污水处理厂污染物排放标准[S]. 2002. GB 18918-2002 Discharge standard of pollutants for municipal wastewater treatment plant[S]. 2002(in Chinese).
PAN Z, ZHU Y, LI L, et al. Transformation of norfloxacin during the chlorination of marine culture water in the presence of iodide ions[J]. Environmental Pollution, 2019, 246:717-727.
ZHANG Y, SHAO Y, GAO N, et al. Chlorination of florfenicol (FF):Reaction kinetics, influencing factors and by-products formation[J]. RSC Advances, 2016, 6(109):107256-107262.
倪先哲, 王刚, 周彩云, 等. 磺胺甲噁唑氯化消毒副产物生成势及影响因素研究[J]. 中国给水排水, 2019, 35(5):48-54. NI X Z, WANG G, ZHOU C Y, et al. Formation potential and influence factors of chlorination disinfection by-products of sulfamethoxazole[J]. China Water & Wastewater,2019, 35(5):48-54(in Chinese).
郭洪光, 刘洪位, 张永丽. 水中环丙沙星(CPFX)氯化消毒副产物生成潜能分析[J]. 净水技术, 2016, 35(1):38-42. GUO H G, LIU H W, ZHANG Y. Analysis of disinfection byproducts formation potential in chlorination of ciprofloxacin (CPFX) in water[J]. Water Purification Technology, 2016, 35(1):38-42(in Chinese).
MEDICE R V, AFONSO R J C F, ALMEIDA M L B, et al. Preliminary assessment of antimicrobial activity and acute toxicity of norfloxacin chlorination by-product mixture[J]. Environmental Science and Pollution Research, 2020, doi.org/10.1007/s11356-020-09748-3.
LI M, WEI D, DU Y. Acute toxicity evaluation for quinolone antibiotics and their chlorination disinfection processes[J]. Journal of Environmental Sciences, 2014, 26(9):1837-1842.