张思兰, 张春, 何敏, 等. 水基钻屑特性分析及其土地利用关键问题初探[J]. 安全与环境学报, 2018, 18(3): 1150-1154
Zhang S L, Zhang C, He M, et al. Characteristic analysis of the waterbased drilling cutting and its preliminary study over the key issues of the corresponding land use[J]. Journal of Safety and Environment, 2018, 18(3): 1150-1154(in Chinese)
|
李强. 页岩气压裂施工质量技术研究[J]. 中国石油和化工标准与质量, 2020, 40(4): 30-31
Li Q. Study on quality technology of shale gas fracturing construction[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(4): 30-31(in Chinese)
|
Jiang G B, Yu J L, Jiang H S, et al. Physicochemical characteristics of oil-based cuttings from pretreatment in shale gas well sites[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(9): 1041-1049
|
张春, 王朝强, 张思兰, 等. 水基钻屑固化填埋对土壤环境影响变化趋势研究[J]. 安全与环境学报, 2018, 18(5): 1997-2002
Zhang C, Wang C Q, Zhang S L, et al. On changing trend of the effect of water-based drilling cutting solidification landfill on soil environment[J]. Journal of Safety and Environment, 2018, 18(5): 1997-2002(in Chinese)
|
Ren H Y, Wei Z J, Wang Y, et al. Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field[J]. Environmental Science and Pollution Research International, 2020, 27(29): 36427-36438
|
易绍金, 向兴金, 肖稳发, 等. 油田化学剂生物毒性的测定及其分级标准[J]. 油气田环境保护, 1996, 6(3): 45-49
Yi S J, Xiang X J, Xiao W F, et al. Determination of biological toxicity of oil field chemicals and its classification standard[J]. Environmental Protection of Oil & Gas Fields, 1996, 6(3): 45-49(in Chinese)
|
黄雪静, 崔茂荣, 周长虹, 等. 钻井液生物毒性评价方法对比[J]. 油气田环境保护, 2006, 16(4): 25-27
, 58 Huang X J, Cui M R, Zhou C H, et al. Comparson of biological toxicity assessment methods for drilling fluids[J]. Environmental Protection of Oil & Gas Fields, 2006, 16(4): 25-27, 58(in Chinese)
|
周名江, 颜天, 李钧, 等. 黑褐新糠虾的急性毒性测试方法及在钻井液毒性评价中的作用[J]. 海洋环境科学, 2001, 20(3): 1-4
Zhou M J, Yan T, Li J, et al. Acute toxicity test method using Neomysis awatschensis and its application in toxicity evaluation of drilling fluid[J]. Marine Environmental Science, 2001, 20(3): 1-4(in Chinese)
|
李硕, 张毅, 姚棋, 等. 等渗盐胁迫下BR对番茄生长及渗透调节特性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 130-136, 145 Li S, Zhang Y, Yao Q, et al. Effects of brassinolide on seedling growth and osmotic regulation characteristics of tomato under iso-osmotic salt stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 130-136, 145(in Chinese)
|
查燕, 汤婕, 阮松林. 模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究[J]. 植物科学学报, 2022, 40(1): 96-104
Zha Y, Tang J, Ruan S L. Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter[J]. Plant Science Journal, 2022, 40(1): 96-104(in Chinese)
|
熊敏先, 吴迪, 许向宁, 等. 土壤重金属镉对高等植物的毒性效应研究进展[J]. 生态毒理学报, 2021, 16(6): 133-149
Xiong M X, Wu D, Xu X N, et al. Advances in toxic effects of soil heavy metal cadmium on higher plants[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 133-149(in Chinese)
|
何珊, 郭渊, 王琛, 等. 镍的环境生物地球化学与毒性效应研究进展[J]. 中国环境科学, 2022, 42(5): 2339-2351
He S, Guo Y, Wang C, et al. A comprehensive review on environmental biogeochemistry and toxic effects of nickel[J]. China Environmental Science, 2022, 42(5): 2339-2351(in Chinese)
|
Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress[J]. Journal of Experimental Botany, 2002, 53(372): 1227-1236
|
Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399
|
Kwak J M, Nguyen V, Schroeder J I. The role of reactive oxygen species in hormonal responses[J]. Plant Physiology, 2006, 141(2): 323-329
|
Van Breusegem F, Dat J F. Reactive oxygen species in plant cell death[J]. Plant Physiology, 2006, 141(2): 384-390
|
刘璨, 李玲. ROS在植物激素信号转导中的作用[J]. 亚热带植物科学, 2008, 37(3): 71-75
Liu C, Li L. Reactive oxygen species and phytohormone signaling transduction pathways[J]. Subtropical Plant Science, 2008, 37(3): 71-75(in Chinese)
|
Máthé-Gáspár G, Anton A. Phytoremediation study: Factors influencing heavy metal uptake of plants[J]. Acta Biologica Szegediensis, 2005, 49(1-2): 69-70
|
李静, 依艳丽, 李亮亮, 等. 几种重金属(Cd、Pb、Cu、Zn)在玉米植株不同器官中的分布特征[J]. 中国农学通报, 2006, 22(4): 244-247
Li J, Yi Y L, Li L L, et al. Distribution of heavy metal (Cd Pb Cu Zn) in different organs of maize[J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 244-247(in Chinese)
|
Klaus A A, Lysenko E A, Kholodova V P. Maize plant growth and accumulation of photosynthetic pigments at short- and long-term exposure to cadmium[J]. Russian Journal of Plant Physiology, 2013, 60(2): 250-259
|
徐稳定. 超甜38玉米对镉的耐受机理及强化富集研究[D]. 广州: 华南理工, 2014: 9-27 Xu W D. The mechanism of Cd tolerance and the enhancement of Cd phytoremediation in maize (Zea mays L.)CT38[D]. Guangzhou: South China University of Technology, 2014
: 9-27(in Chinese)
|
Silva S, Ferreira de Oliveira J M P, Dias M C, et al. Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent[J]. Journal of Hazardous Materials, 2019, 380: 120889
|
吕冬梅, 朱广龙, 王玥, 等. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737
Lyu D M, Zhu G L, Wang Y, et al. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.)[J]. Acta Agronomica Sinica, 2021, 47(4): 728-737(in Chinese)
|
刘茵. Cd2+、Zn2+对黑麦草种子萌发及幼苗生长的影响[J]. 湖北农业科学, 2011, 50(18): 3798-3800
Liu Y. Effects of Cd2+ and Zn2+ on seed germination and seedling growth of Lolium perenne L.[J]. Hubei Agricultural Sciences, 2011, 50(18): 3798-3800(in Chinese)
|