赵永椿,马斯鸣,杨建平,等. 燃煤电厂污染物超净排放的发展及现状[J].煤炭转化, 2015, 40(11):2629-2640. ZHAO Y C, MA S M, YANG J P, et al. Development and current status of ultra-clean emissions of pollutants from coal-fired power plants[J].Coal Conversion, 2015, 40(11):2629-2640(in Chinese).
晋华东,景文,黄张根,等. 两种钒炭催化剂低温选择性催化还原脱硝性能比较及分析[J].环境化学, 2013, 32(10):1869-1873. JIN H D, JING W, HUANG Z G, et al, Comparison and analysisof the performance of two vanadium loaded carbon-based catalysts for the low temperature SCR of NO by ammonia[J].Environmental Chemistry, 2013, 32(10):1869-1873(in Chinese).
李雪飞,张文辉,杜铭华. 干法烟气脱硝综述[J].洁净煤技术, 2006, 12(3):43-46. LI X F, ZHANG W H, DU M H, Summary of dry flue gas denitrification[J]. Clean Coal Technology, 2006, 12(3):43-46(in Chinese).
郭旸旸,李玉然,朱廷钰,等.活性炭吸附法同时脱硫脱硝[C]//第七届全国环境化学大会摘要集,2013. GUO Y Y, LI Y R, ZHU T Y, et al, Simultaneous desulfurization and denitrification by activated carbon adsorption[C]//Summary of the 7th National Conference on Environmental Chemistry,2013(in Chinese).
TSUJI K,SHIRAISHI I. Combined desulfurization,denitrification and reduction of air toxics using activated coke:Activity of activated coke[J]. Fuel,1997,76(6):549-553.
赵德生.太钢450 m2烧结机烟气脱硫脱硝工艺实践[C]//全国烧结烟气脱硫技术交流会论文集, 2011, 8-15. ZHAO D S, Practice of flue gas desulfurization and denitrification process for 450 m2 sintering gas of Taiyuan Iron and Steel Co[C]//Proceedings of National Sintering Flue Gas Desulfurization Technology, 2011, 8-15(in Chinese).
GARCIA -BORDEJE E, LAZARO M J, MOLINER R, et al. Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures:Influence of the oxidation pre-treatment[J]. Carbon, 2006, 44(3):407-417.
BOYANO A, HERRERA C, LARRUBIA M A, et al. Vanadium loaded carbon-based monoliths for the on-board no reduction:Influence of temperature and period of the oxidation treatment[J]. Chemical Engineering Journal, 2010, 160(2):623-633.
TENG H, TU Y T, LAI Y C, et al. Reduction of NO with NH3 over carbon catalysts:The effects of treating carbon with H2SO4 and HNO3[J]. Carbon, 2001, 39(4):575-582.
ZHU L, HUANG B, WANG W, et al. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catalysis Communications, 2011, 12(6):394-398.
BOYANO A, GALVEZ M E, MOLINER R, et al. Carbon-based catalytic briquettes for the reduction of NO:Effect of H2SO4 and HNO3 carbon support treatment[J]. Fuel, 2008, 87(10/11):2058-2068.
GALVEZ M E, LAZARO M J, MOLINER R. Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide[J]. Catalysis Today, 2005, 102-103:142-147.
HUANG M C, TENG H. Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH3[J]. Carbon, 2003, 41(5):951-957.
AHMED S N, BALDWIN R, DERBYSHIRE F, et al. Catalytic reduction of nitric oxide over activated carbons[J]. Fuel, 1993, 72(3):287-292.
ZHU Z, LIU Z, LIU S, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J]. Applied Catalysis B:Environmental, 2000, 26(1):25-35.
SZYMANSKI G S, KARPINSKI Z, BINIAK S, et al. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon[J]. Carbon, 2002, 40(14):2627-2639.
FIGUEIREDO J L, PERAIRA M F R, FREITAS M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9):1379-1389.
佟莉,徐文青,元昊, 等. 硝酸改性活性炭上氧/氮官能团对脱汞性能的促进作用[J].物理化学学报, 2015,31(3):512-518. TONG L, XU W Q, YUAN H, et al, Enhanced Effect of O/N groups on the Hg0 removal efficiency over the HNO3-modified activated carbon[J]. Acta Phys.-Chim. Sin, 2015,31(3):512-518(in Chinese).
MORALES-TORRES S, SILVA T L S, PASTRANA-MARTINEZ L M, et al. Modification of the surface chemistry of singleand multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation[J]. Physical Chemistry Chemical Physics, 2014, 16(24):12237-12250.
ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796.
SWIATKOWSKIi A, PAKULA M, BINIAK S, et al. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(Ⅱ) ions[J]. Carbon, 2004, 42(15):3057-3069.