Ma L L, Zhao J F, Wang J, et al. The acute liver injury in mice caused by nano-anatase TiO2[J]. Nanoscale Research Letters, 2009, 4(11):1275-1285
|
Sha B Y, Gao W, Wang S Q, et al. Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat[J]. Composites Part B:Engineering, 2011, 42(8):2136-2144
|
Liu S J, Zhao Y, Liu Y X, et al. Pre-exposure to TiO2-NPs aggravates alcohol-related liver injury by inducing intestinal barrier damage in mice[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2021, 185(1):28-37
|
刘颖, 陈春英. 纳米材料的安全性研究及其评价[J]. 科学通报, 2011, 56(2):119-125
Liu Y, Chen C Y. Safety and risk assessment of nanomaterials[J]. Chinese Science Bulletin, 2011, 56(2):119-125(in Chinese)
|
国家市场监督管理总局. 纳米技术纳米材料风险评估:GB/T37129-2018[S]. 北京:中国标准出版社, 2018
|
Otter D W, Medina J R, Kalita J K. A survey of the usages of deep learning for natural language processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2):604-624
|
赵京胜, 宋梦雪, 高祥. 自然语言处理发展及应用综述[J]. 信息技术与信息化, 2019(7):142-145
|
Ker J, Wang L P, Rao J, et al. Deep learning applications in medical image analysis[J]. IEEE Access, 2018, 6:9375-9389
|
圣文顺, 孙艳文. 卷积神经网络在图像识别中的应用[J]. 软件工程, 2019, 22(2):13-16
Sheng W S, Sun Y W. Application of convolutional neural network in image recognition[J]. Software Engineering, 2019, 22(2):13-16(in Chinese)
|
Grigorescu S, Trasnea B, Cocias T, et al. A survey of deep learning techniques for autonomous driving[J]. Journal of Field Robotics, 2020, 37(3):362-386
|
潘峰, 鲍泓. 强化学习的自动驾驶控制技术研究进展[J]. 中国图象图形学报, 2021, 26(1):28-35
Pan F, Bao H. Research progress of automatic driving control technology based on reinforcement learning[J]. Journal of Image and Graphics, 2021, 26(1):28-35(in Chinese)
|
Sizochenko N, Syzochenko M, Fjodorova N, et al. Evaluating genotoxicity of metal oxide nanoparticles:Application of advanced supervised and unsupervised machine learning techniques[J]. Ecotoxicology and Environmental Safety, 2019, 185:109733
|
Chau Y T, Yap C W. Quantitative nanostructure-activity relationship modelling of nanoparticles[J]. RSC Advances, 2012, 2(22):8489-8496
|
Ghorbanzadeh M, Fatemi M H, Karimpour M. Modeling the cellular uptake of magnetofluorescent nanoparticles in pancreatic cancer cells:A quantitative structure activity relationship study[J]. Industrial & Engineering Chemistry Research, 2012, 51(32):10712-10718
|
Lamon L, Asturiol D, Richarz A, et al. Grouping of nanomaterials to read-across hazard endpoints:From data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques[J]. Particle and Fibre Toxicology, 2018, 15:37
|
Aguilera P A, Fernández A, Fernández R, et al. Bayesian networks in environmental modelling[J]. Environmental Modelling & Software, 2011, 26(12):1376-1388
|
Loh W Y. Classification and regression trees[J]. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 2011, 1(1):14-23
|
Burden F R, Winkler D A. Relevance vector machines:Sparse classification methods for QSAR[J]. Journal of Chemical Information and Modeling, 2015, 55(8):1529-1534
|
Svetnik V, Liaw A, Tong C, et al. Random forest:A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(6):1947-1958
|
Chen T Q, Guestrin C. XGBoost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA:ACM, 2016:785-794
|
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python[DB/OL].[2022-01-05]. https://arxiv.org/abs/1201.0490
|
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444
|
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90
|
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780
|
Paszke A, Gross S, Massa F, et al. PyTorch:An imperative style, high-performance deep learning library[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS). Vancouver, Canada, 2019
|
Abadi M, Barham P, Chen J M, et al. TensorFlow:A system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, GA, USA, 2016:2016
|
Jia Y Q, Shelhamer E, Donahue J, et al. Caffe:Convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, Florida, USA:ACM, 2014:675-678
|
Furxhi I, Murphy F, Mullins M, et al. Practices and trends of machine learning application in nanotoxicology[J]. Nanomaterials, 2020, 10(1):E116
|
Wyrzykowska E, Jagiello K, Rasulev B, et al. Descriptors in Nano-QSAR/QSPR Modeling[M]//Computational Nanotoxicology. Gdansk, Poland:Jenny Stanford Publishing, 2019:245-302
|
Gajewicz A. What if the number of nanotoxicity data is too small for developing predictive nano-QSAR models? An alternative read-across based approach for filling data gaps[J]. Nanoscale, 2017, 9(24):8435-8448
|
Ban Z, Zhou Q X, Sun A Q, et al. Screening priority factors determining and predicting the reproductive toxicity of various nanoparticles[J]. Environmental Science & Technology, 2018, 52(17):9666-9676
|
Choi J S, Ha M K, Trinh T X, et al. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources[J]. Scientific Reports, 2018, 8(1):6110
|
Qiao Y C, Yang X, Wu E. The research of BP neural network based on one-hot encoding and principle component analysis in determining the therapeutic effect of diabetes mellitus[C]//Proceedings of the 3rd International Workshop on Renewable Energy and Development (IWRED), Guangzhou:Taiyuan University of Technology, 2019
|
Peng T, Wei C H, Yu F B, et al. Predicting nanotoxicity by an integrated machine learning and metabolomics approach[J]. Environmental Pollution, 2020, 267:115434
|
Mu Y S, Wu F C, Zhao Q, et al. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs[J]. Nanotoxicology, 2016, 10(9):1207-1214
|
Kar S, Gajewicz A, Puzyn T, et al. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells[J]. Toxicology in Vitro:An International Journal Published in Association With BIBRA, 2014, 28(4):600-606
|
Ban Z, Yuan P, Yu F B, et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(19):10492-10499
|
Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874
|
Ribeiro M T, Singh S, Guestrin C. "why should I trust you?":Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA:ACM, 2016:1135-1144
|
Szecówka P M, Szczurek A, Mazurowski M A, et al. Neural network sensitivity analysis applied for the reduction of the sensor matrix[C]//Proceedings of the 10th International Conference on Computer Aided Systems Theory. New York:ACM, 2005:27-32
|
Nohara Y, Wakata Y, Nakashima N. Interpreting medical information using machine learning and individual conditional expectation[C]//Proceedings of the 15th World Congress on Health and Biomedical Informatics (MEDINFO). Sao Paulo, Brazil:International Medical Informatics Association, Brazilian Health Informatics Society, 2015:1073-1073
|
Gil P R, Oberdörster G, Elder A, et al. Correlating physico-chemical with toxicological properties of nanoparticles:The present and the future[J]. ACS Nano, 2010, 4(10):5527-5531
|
Murdock R C, Braydich-Stolle L, Schrand A M, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2008, 101(2):239-253
|
Schaeublin N M, Braydich-Stolle L K, Maurer E I, et al. Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(6):3248-3258
|
Cho W S, Duffin R, Thielbeer F, et al. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2012, 126(2):469-477
|
Mikolajczyk A, Gajewicz A, Rasulev B, et al. Zeta potential for metal oxide nanoparticles:A predictive model developed by a nano-quantitative structure-property relationship approach[J]. Chemistry of Materials, 2015, 27(7):2400-2407
|
Sizochenko N, Mikolajczyk A, Syzochenko M, et al. Zeta potentials (ζ) of metal oxide nanoparticles:A meta-analysis of experimental data and a predictive neural networks modeling[J]. NanoImpact, 2021, 22:100317
|
Zhang Q B, Xiu Z M, Peretyazhko T, et al. Toxicity of silver nanoparticles:Influence of the particle shape, size, and surface coating[J]. Abstracts of Papers of the American Chemical Society, 2014, 247:403
|
Coquelin L, Fischer N, Feltin N, et al. Towards the use of deep generative models for the characterization in size of aggregated TiO2 nanoparticles measured by scanning electron microscopy (SEM)[J]. Materials Research Express, 2019, 6(8):085001
|
Berg S, Kutra D, Kroeger T, et al. Ilastik:Interactive machine learning for (bio)image analysis[J]. Nature Methods, 2019, 16(12):1226-1232
|
Ilett M, Wills J, Rees P, et al. Application of automated electron microscopy imaging and machine learning to characterise and quantify nanoparticle dispersion in aqueous media[J]. Journal of Microscopy, 2020, 279(3):177-184
|
Puzyn T, Rasulev B, Gajewicz A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles[J]. Nature Nanotechnology, 2011, 6(3):175-178
|
Karatzas P, Melagraki G, Ellis L A, et al. Development of deep learning models for predicting the effects of exposure to engineered nanomaterials on Daphnia magna[J]. Small, 2020, 16(36):e2001080
|
Gernand J M, Casman E A. Nanoparticle characteristic interaction effects on pulmonary toxicity:A random forest modeling framework to compare risks of nanomaterial variants[J]. Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering, 2016, 2(2):158-161
|
Isoda K, Tanaka A, Fuzimori C, et al. Toxicity of gold nanoparticles in mice due to nanoparticle/drug interaction induces acute kidney damage[J]. Nanoscale Research Letters, 2020, 15(1):141
|
Abudayyak M, Altınçekiç Gürkaynak T, Özhan G. Assessment of cellular responses in kidney cells exposed to cobalt oxide nanoparticles[J]. Marmara Pharmaceutical Journal, 2017, 21(3):537
|
Salazar-García S, Delgado-Buenrostro N L, Rodríguez-Escamilla J C, et al. Zinc protects the rat brain from damage induced by 24 h exposure to silver nanoparticles[J]. Journal of Nanoparticle Research, 2019, 21(8):1-13
|
Cheng Y P, Chen Z Z, Yang S, et al. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques[J]. The Science of the Total Environment, 2021, 800:149584
|
Liu L, Zhang Z L, Cao L H, et al. Cytotoxicity of phytosynthesized silver nanoparticles:A meta-analysis by machine learning algorithms[J]. Sustainable Chemistry and Pharmacy, 2021, 21:100425
|
Yu F B, Wei C H, Deng P, et al. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles[J]. Science Advances, 2021, 7(22):eabf4130
|
Nel A E, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nature Materials, 2009, 8(7):543-557
|
Haase A, Klaessig F. EU US roadmap nanoinformatics 2030[R]. Zenodo, 2018
|
Kar S, Gajewicz A, Puzyn T, et al. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles:A mechanistic QSTR approach[J]. Ecotoxicology and Environmental Safety, 2014, 107:162-169
|
Liu Y, Yang Q, Li Y, et al. Application of machine learning in organic chemistry[J]. Chinese Journal of Organic Chemistry, 2020, 40(11):3812-3827
|
Yan X L, Sedykh A, Wang W Y, et al. In silico profiling nanoparticles:Predictive nanomodeling using universal nanodescriptors and various machine learning approaches[J]. Nanoscale, 2019, 11(17):8352-8362
|
Yan X L, Zhang J, Russo D P, et al. Prediction of nano-bio interactions through convolutional neural network analysis of nanostructure images[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51):19096-19104
|
李潍, 于相毅, 史薇, 等. 欧盟健康风险评估技术概述[J]. 生态毒理学报, 2019, 14(4):43-53
Li W, Yu X Y, Shi W, et al. Overview of EU human health risk assessment technology[J]. Asian Journal of Ecotoxicology, 2019, 14(4):43-53(in Chinese)
|