HAO Y F, LI Y M, HAN X, et al. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017:Concentrations, temporal trends and potential sources[J]. Environmental Pollution, 2019, 249:381-389.
|
TEUTEN E L, XU L, REDDY C M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science, 2005, 307(5711):917-920.
|
UNSON M D, HOLLAND N D, FAULKNER D J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue[J]. Marine Biology, 1994, 119(1):1-11.
|
HORST A, HOLMSTRAND H, ANDERSSON P, et al. Stable bromine isotopic composition of methyl bromide released from plant matter[J]. Geochimica et Cosmochimica Acta, 2014, 125:186-195.
|
ZHAO L, HU G, YAN Y, et al. Source apportionment of heavy metals in urban road dust in a continental city of eastern China:Using Pb and Sr isotopes combined with multivariate statistical analysis[J]. Atmospheric Environment, 2019, 201:201-211.
|
LI Y, ZHANG H, SHAO L, et al. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis[J]. Journal of Environmental Sciences, 2019, 82:47-56.
|
MASBOU J, DROUIN G, PAYRAUDEAU S, et al. Carbon and nitrogen stable isotope fractionation during abiotic hydrolysis of pesticides[J]. Chemosphere, 2018, 213:368-376.
|
VOGT C, DORER C, MUSAT F, et al. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons-from enzymes to the environment[J]. Current Opinion in Biotechnology, 2016, 41:90-98.
|
CHEVALLIER M L, COOPER M, KUEMMEL S, et al. Distinct carbon isotope fractionation signatures during biotic and abiotic reductive transformation of chlordecone[J]. Environmental Science & Technology, 2018, 52(6):3615-3624.
|
CINCINELLI A, PIERI F, ZHANG Y, et al. Compound specific isotope analysis (CSIA) for chlorine and bromine:A review of techniques and applications to elucidate environmental sources and processes[J]. Environmental Pollution, 2012, 169:112-127.
|
KAUFMANN R, LONG A, BENTLEY H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309(5966):338-340.
|
EGGENKAMP H G M, COLEMAN M L. Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples[J]. Chemical Geology, 2000, 167:393-402.
|
ELSNER M, JOCHMANN M A, HOFSTETTER T B, et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9):2471-2491.
|
KOZELL A, YECHESKEL Y, BALABAN N, et al. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA)[J]. Environmental Science and Technology, 2015, 49(7):4433-4440.
|
SHOUAKAR-STASH O, DRIMMIE R J, ZHANG M, et al. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry, 2006, 21(5):766-781.
|
SHOUAKAR-STASH O, FRAPE S K, DRIMMIE R J. Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry[J]. Analytical Chemistry, 2005, 77(13):4027-4033.
|
NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria[J]. Environmental Science & Technology, 2002, 36(20):4389-4394.
|
MA Y Q, PENG Z K, CHEN Y J, et al. High precise determination of bromine isotopic ratios by positive thermal ionization mass spectrometry using static multicollection based on Cs2Br+ Ions[J]. Chinese Journal of Analytical Chemistry, 2016, 44(2):186-191.
|
SAKAGUCHI-SOEDER K, JAGER J, GRUND H, et al. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18):3077-3084.
|
VAN ACKER M R M D, SHAHAR A, YOUNG E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13):4663-4667.
|
AEPPLI C, HOLMSTRAND H, ANDERSSON P, et al. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing[J]. Analytical Chemistry, 2010, 82(1):420-426.
|
刘咸德,李莉,池逸,等.气相色谱-高分辨飞行时间质谱法测定大气中六氯苯的氯同位素丰度比值[J]. 质谱学报,2016,37(1):10-16.
LIU X D, LI L, CHI Y, et al. Chlorine isotope analysis of hexachlorobenzene in air using high resolution time-of-flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1):10-16(in Chinese).
|
HOLT B D, STURCHIO N C, ABRAJANO T A, et al. Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine[J]. Analytical Chemistry, 1997, 69(14):2727-2733.
|
JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent[J]. Analytical Chemistry, 1997, 69(20):4259-4266.
|
HOLT B D, HERATY L J, STURCHIO N C. Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine[J]. Environmental Pollution, 2001, 113(3):263-269.
|
HITZFELD K L, GEHRE M, RICHNOW H H. A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur[J]. Rapid Communications in Mass Spectrometry, 2011, 25(20):3114-3122.
|
RENPENNING J, HITZFELD K L, GILEVSKA T, et al. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS[J]. Analytical Chemistry, 2015, 87(5):2832-2839.
|
FRANKE S, KUEMMEL S, NIJENHUIS I. Liquid chromatography/isotope ratio mass spectrometry analysis of halogenated benzoates for characterization of the underlying degradation reaction in Thauera chlorobenzoica CB-1T[J]. Rapid Communications in Mass Spectrometry, 2018, 32(11):906-912.
|
HOLMSTRAND H, ANDERSSON P, GUSTAFSSON O. Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry[J]. Analytical Chemistry, 2004, 76(8):2336-2342.
|
NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry[J]. Analytica Chimica Acta, 2002, 455(1):1-9.
|
SYLVA S P, BALL L, NELSON R K, et al. Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(20):3301-3305.
|
GELMAN F, HALICZ L. High precision determination of bromine isotope ratio by GC-MC-ICPMS[J]. International Journal of Mass Spectrometry, 2010, 289(2/3):167-169.
|
ZAKON Y, HALICZ L, GELMAN F. Isotope analysis of sulfur, bromine, and chlorine in individual anionic species by ion chromatography/multicollector-ICPMS[J]. Analytical Chemistry, 2014, 86(13):6495-6500.
|
ZAKON Y, HALICZ L, LEV O, et al. Compound-specific bromine isotope ratio analysis using gas chromatography/quadrupole mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(17):1951-1956.
|
HECKEL B, RODRIGUEZ-FERNANDEZ D, TORRENTO C, et al. Compound-specific chlorine isotope analysis of tetrachloromethane and trichloromethane by gas chromatography-isotope ratio mass spectrometry vs gas chromatography-quadrupole mass spectrometry:method development and evaluation of precision and trueness[J]. Analytical Chemistry, 2017, 89(6):3411-3420.
|
BERNSTEIN A, SHOUAKAR-STASH O, EBERT K, et al. Compound-specific chlorine isotope analysis:A comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study[J]. Analytical Chemistry, 2011, 83(20):7624-7634.
|
陈柳竹. 典型多溴联苯醚单体碳溴同位素效应研究[D]. 北京:中国地质大学,2017. CHEN L Z. Study on carbon and bromine isotopic effects of typical PBDEs congeners[D] Beijing:China University of Geosciences, 2017(in Chinese).
|
JIN B, LASKOV C, ROLLE M, et al. Chlorine isotope analysis of organic contaminants using GC-qMS:Method optimization and comparison of different evaluation schemes[J]. Environmental Science & Technology, 2011, 45(12):5279-5286.
|
SCHIMMELRNANN A, QI H, COPLEN T B, et al. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements:caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils[J]. Analytical Chemistry, 2016, 88(8):4294-4302.
|
TANG C M, TAN J H, XIONG S S, et al. Chlorine and bromine isotope fractionation of halogenated organic pollutants on gas chromatography columns[J]. Journal of Chromatography A, 2017, 1514:103-109.
|
TANG C M, TAN J H. Simultaneous observation of concurrent two-dimensional carbon and chlorine/bromine isotope fractionations of halogenated organic compounds on gas[J]. Analytica Chimica Acta, 2018, 1039:172-182.
|
JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions:scope of application to environmental problems[J]. Applied Geochemistry, 2001, 16(9/10):1021-1031.
|
CHEN L Z, SHOUAKAR-STASH O, MA T, et al. Significance of stable carbon and bromine isotopes in the source identification of PBDEs[J]. Chemosphere, 2017, 186:160-166.
|
BOWDEN B F, TOWERZEY L, JUNK P C. A new brominated diphenyl ether from the marine sponge Dysidea herbacea[J]. Australian Journal of Chemistry, 2000, 53(4):299-301.
|
KUNIYOSHI M, YAMADA K, HIGA T. A biologically active diphenyl ether from the green alga Cladophora fascicularis[J]. Experientia, 1985, 41(4):523-524.
|
CHUNG H Y, MA W C J, ANG P O, et al. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9):2619-2624.
|
CARRIZO D, UNGER M, HOLMSTRAND H, et al. Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances[J]. Environmental Chemistry, 2011, 8(2):127-132.
|
HOLMSTRAND H, ZENCAK Z, MANDALAKIS M, et al. Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane[J]. Applied Geochemistry, 2010, 25(9):1301-1306.
|
DRENZEK N J, TARR C H, EGLINTON T I, et al. Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds[J]. Organic Geochemistry, 2002, 33(4):437-444.
|
REDDY C M, XU L, DRENZEK N J, et al. A chlorine isotope effect for enzyme-catalyzed chlorination[J]. Journal of the American Chemical Society, 2002, 124(49):14526-14527.
|
HOLMSTRAND H, GADOMSKI D, MANDALAKIS M, et al. Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating[J]. Environmental Science & Technology, 2006, 40(12):3730-3735.
|
ELSNER M, ZWANK L, HUNKELER D, et al. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science & Technology, 2005, 39(18):6896-6916.
|
KUNTZE K, KOZELL A, RICHNOW H H, et al. Dual carbon-bromine stable isotope analysis allows distinguishing transformation pathways of ethylene dibromide[J]. Environmental Science and Technology, 2016, 50(18):9855-9863.
|
HOLMSTRAND H, MANDALAKIS M, ZENCAK Z, et al. First compound-specific chlorine-isotope analysis of environmentally-bioaccumulated organochlorines indicates a degradation-relatable kinetic isotope effect for DDT[J]. Chemosphere, 2007, 69(10):1533-1539.
|
PONSIN V, TORRENTO C, LIHL C, et al. Compound-specific chlorine isotope analysis of the herbicides atrazine, acetochlor, and metolachlor[J]. Analytical Chemistry, 2019, 91(22):14290-14298.
|
HOEYNG D, PROMMER H, BLUM P, et al. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers[J]. Journal of Contaminant Hydrology, 2015, 174:10-27.
|
ROSELL M, PALAU J, HATIJAH MORTAN S, et al. Dual carbon-chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp[J]. Science of the Total Environment, 2019, 648:422-429.
|
RODRIGUEZ-FERNANDEZ D, TORRENTO C, PALAU J, et al. Unravelling long-term source removal effects and chlorinated methanes natural attenuation processes by C and Cl stable isotopic patterns at a complex field site[J]. Science of the Total Environment, 2018, 645:286-296.
|
HERMON L, DENONFOUX J, HELLAL J, et al. Dichloromethane biodegradation in multi-contaminated groundwater:Insights from biomolecular and compound-specific isotope analyses[J]. Water Research, 2018, 142:217-226.
|
RODRIGUEZ-FERNANDEZ D, TORRENTO C, GUIVERNAU M, et al. Vitamin B12 effects on chlorinated methanes-degrading microcosms:Dual isotope and metabolically active microbial populations assessment[J]. Science of the Total Environment, 2018, 621:1615-1625.
|
ABE Y, ARAVENA R, ZOPFI J, et al. Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene[J]. Environmental Science & Technology, 2009, 43(1):101-107.
|
MURRAY A M, OTTOSEN C B, MAILLARD J, et al. Chlorinated ethene plume evolution after source thermal remediation:Determination of degradation rates and mechanisms[J]. Journal of Contaminant Hydrology, 2019, 227, DOI:10.1016/j.jconhyd.2019.103551.
|
QIAN Y G, CHEN K, LIU Y Q, et al. Assessment of hexachlorcyclohexane biodegradation in contaminated soil by compound-specific stable isotope analysis[J]. Environmental Pollution, 2019, 254, DOI:10.1016/j.envpol.2019.113008.
|
WU L P, MOSES S Y, LIU Y Q, et al. A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis[J]. Analytica Chimica Acta, 2019, 1064:56-64.
|
SCHILLING I E, BOPP C E, LAL R, et al. Assessing aerobic biotransformation of hexachlorocyclohexane isomers by compound-specific isotope analysis[J]. Environmental Science & Technology, 2019, 53(13):7419-7431.
|
SCHILLING I E, HESS R, BOLOTIN J, et al. Kinetic isotope effects of the enzymatic transformation of γ-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2[J]. Environmental Science & Technology, 2019, 53(5):2353-2363.
|
BASHIR S, KUNTZE K, VOGT C, et al. Anaerobic biotransformation of hexachlorocyclohexane isomers by Dehalococcoides species and an enrichment culture[J]. Biodegradation, 2018, 29(4):409-418.
|
BENISRAEL M, WANNER P, ARAVENA R, et al. Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis[J]. International Journal of Phytoremediation, 2019, 21(1):60-69.
|
MARCHESI M, ALBERTI L, SHOUAKAR-STASH O, et al. 37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions[J]. Science of the Total Environment, 2018, 619:784-793.
|
GOLAN R, GELMAN F, KUDER T, et al. Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil:pathway and isotope effects[J]. Biodegradation, 2019, 30(1):37-46.
|
BERENS M J, ULRICH B A, STREHLAU J H, et al. Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction[J]. Environmental Science-Processes & Impacts, 2019, 21(1):51-62.
|
EHRL B N, GHARASOO M, ELSNER M. Isotope fractionation pinpoints membrane permeability as a barrier to atrazine biodegradation in Gram-negative Polaromonas sp. Nea-C[J]. Environmental Science & Technology, 2018, 52(7):4137-4144.
|
WOODS A, KUNTZE K, GELMAN F, et al. Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes[J]. Chemosphere, 2018, 190:211-217.
|
JIN B, NIJENHUIS I, ROLLE M. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation[J]. Isotopes in Environmental and Health Studies, 2018, 54(4):418-434.
|
BERNSTEIN A, RONEN Z, LEVIN E, et al. Kinetic bromine isotope effect:example from the microbial debromination of brominated phenols[J]. Analytical and Bioanalytical Chemistry, 2013, 405(9):2923-2929.
|
ZAKON Y, HALICZ L, GELMAN F. Bromine and carbon isotope effects during photolysis of brominated phenols[J]. Environmental Science and Technology, 2013, 47(24):14147-14153.
|
ELSNER M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants:Principles, prospects and limitations[J]. Journal of Environmental Monitoring, 2010, 12(11):2005-2031.
|
CRETNIK S, THORESON K A, BERNSTEIN A, et al. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria:Insights from dual element isotope analysis (13C/12C, 37Cl/35Cl)[J]. Environmental Science & Technology, 2013, 47(13):6855-6863.
|
RENPENNING J, KELLER S, CRETNIK S, et al. Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene[J]. Environmental Science & Technology, 2014, 48(20):11837-11845.
|
WIEGERT C, AEPPLI C, KNOWLES T, et al. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater[J]. Environmental Science & Technology, 2012, 46(20):10918-10925.
|
KUDER T, VAN BREUKELEN B M, VANDERFORD M, et al. 3D-CSIA:Carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a dehalococcoides culture[J]. Environmental Science & Technology, 2013, 47(17):9668-9677.
|
AEPPLI C, TYSKLIND M, HOLMSTRAND H, et al. Use of Cl and C isotopic fractionation to identify degradation and sources of polychlorinated phenols:mechanistic study and field application[J]. Environmental Science & Technology, 2013, 47(2):790-797.
|
BERGMANN F D, ABU LABAN N M F H, MEYER A H, et al. Dual (C, H) isotope fractionation in anaerobic low molecular weight (Poly)aromatic hydrocarbon (PAH) degradation:Potential for field studies and mechanistic implications[J]. Environmental Science & Technology, 2011, 45(16):6947-6953.
|
KUDER T, WILSON J T, KAISER P, et al. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE:Microcosm and field evidence[J]. Environmental Science & Technology, 2005, 39(1):213-220.
|
MARIOTTI A, GERMON J C, HUBERT P, et al. Experimental determination of nitrogen kinetic isotope fractionation:some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62(3):413-430.
|
VAN BREUKELEN B M, HUNKELER D, VOLKERING F. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation[J]. Environmental Science & Technology, 2005, 39(11):4189-4197.
|
HUNKELER D, VAN BREUKELEN B M, ELSNER M. Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes[J]. Environmental Science & Technology, 2009, 43(17):6750-6756.
|