谢文凤, 吴彤, 石岳骄, 等. 国内外有机肥标准对比及风险评价[J]. 中国生态农业学报(中英文), 2020, 28(12): 1958-1968 Xie W F, Wu T, Shi Y J, et al. Chinese and international organic fertilizer standard comparison and risk assessment[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1958-1968(in Chinese)
Black Z, Balta I, Black L, et al. The fate of foodborne pathogens in manure treated soil[J]. Frontiers in Microbiology, 2021, 12: 781357
Brooks J P, Adeli A, McLaughlin M R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems[J]. Water Research, 2014, 57: 96-103
李霞, 邓立刚, 王峰恩, 等. 堆肥消减畜禽粪便中病原微生物及抗生素残留的研究进展[J]. 山东农业科学, 2017, 49(7): 161-166 Li X, Deng L G, Wang F E, et al. Progress in removal effect of composting on residues of pathogenic microorganisms and antibiotics in livestock and poultry manure[J]. Shandong Agricultural Sciences, 2017, 49(7): 161-166(in Chinese)
Qian X, Gu J, Sun W, et al. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J]. Journal of Hazardous Materials, 2018, 344: 716-722
冯亚辉, 郭姣, 李伊光, 等. 集约化养猪粪便理化性质和堆肥工艺的研究[J]. 中国农业文摘-农业工程, 2023, 35(3): 53-58 Feng Y H, Guo J, Li Y G, et al. Study on the physicochemical properties and composting process of intensive pig manure[J]. Chinese Agricultural Abstracts-Agricultural Engineering, 2023, 35(3), 53-58(in Chinese)
Beuchat L R. Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases[J]. British Food Journal, 2006, 108(1): 38-53
Guo Y J, Qiu T L, Gao M, et al. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species[J]. Journal of Hazardous Materials, 2021, 415: 125595
van Overbeek L, Duhamel M, Aanstoot S, et al. Transmission of Escherichia coli from manure to root zones of field-grown lettuce and leek plants[J]. Microorganisms, 2021, 9(11): 2289
Yang L, Liu W X, Zhu D, et al. Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest[J]. Soil Biology and Biochemistry, 2018, 122: 131-140
Scanes C G. Animals and Human Disease: Zoonosis, Vectors, Food-Borne Diseases, and Allergies[M]//Animals and Human Society. Amsterdam: Elsevier, 2018: 331-354
Liu B, Zheng D D, Jin Q, et al. VFDB 2019: A comparative pathogenomic platform with an interactive web interface[J]. Nucleic Acids Research, 2019, 47(D1): D687-D692
Engering A, Hogerwerf L, Slingenbergh J. Pathogen-host-environment interplay and disease emergence[J]. Emerging Microbes & Infections, 2013, 2(2): e5
Zou Y N, Xiao Z J, Wang L F, et al. Prevalence of antibiotic resistance genes and virulence factors in the sediment of WWTP effluent-dominated rivers[J]. Science of the Total Environment, 2023, 897: 165441
Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098): 1107-1111
CDC. What exactly is antibiotic resistance?[EB/OL]. (2022-10-05)[2024-03-05]. https://www.cdc.gov/drugresistance/about.htm
苑学霞, 梁京芸, 范丽霞, 等. 粪肥施用土壤抗生素抗性基因来源、转移及影响因素[J]. 土壤学报, 2020, 57(1): 36-47 Yuan X X, Liang J Y, Fan L X, et al. Effects of manure application on source and transport of antibiotic resistant genes in soil and their affecting factors[J]. Acta Pedologica Sinica, 2020, 57(1): 36-47(in Chinese)
Jechalke S, Schierstaedt J, Becker M, et al. Salmonella establishment in agricultural soil and colonization of crop plants depend on soil type and plant species[J]. Frontiers in Microbiology, 2019, 10: 967
The Huttenhower Lab. KneadData[DB/OL].[2024-03-06]. https://huttenhower.sph.harvard.edu/kneaddata/
Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477
Chaumeil P A, Mussig A J, Hugenholtz P, et al. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database[J]. Bioinformatics, 2022, 38(23): 5315-5316
Liu B, Zheng D D, Zhou S Y, et al. VFDB 2022: A general classification scheme for bacterial virulence factors[J]. Nucleic Acids Research, 2022, 50(D1): D912-D917
Yin X L, Zheng X W, Li L G, et al. ARGs-OAP v3.0: Antibiotic-resistance gene database curation and analysis pipeline optimization[J]. Engineering, 2023, 27: 234-241
Zhu L, Lian Y L, Lin D, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356
Park S H, Chang P S, Ryu S, et al. Development of a novel selective and differential medium for the isolation of Listeria monocytogenes[J]. Applied and Environmental Microbiology, 2014, 80(3): 1020-1025
余萌, 王似锦, 曹蕊, 等. 洋葱伯克霍尔德菌群(Bcc)的选择和分离培养基研究[J]. 中国药事, 2022, 36(7): 746-757 Yu M, Wang S J, Cao R, et al. Study on selection and subculture agar of Burkholderia cepacia complex[J]. Chinese Pharmaceutical Affairs, 2022, 36(7): 746-757(in Chinese)
Wu J, Guo S M, Li K J, et al. Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties[J]. Chemosphere, 2023, 336: 139272
Lynch J P 3rd, Clark N M, Zhanel G G. Escalating antimicrobial resistance among Enterobacteriaceae: Focus on carbapenemases[J]. Expert Opinion on Pharmacotherapy, 2021, 22(11): 1455-1473
Al-Kharousi Z S, Guizani N, Al-Sadi A M, et al. Antibiotic resistance of Enterobacteriaceae isolated from fresh fruits and vegetables and characterization of their AmpC β-lactamases[J]. Journal of Food Protection, 2019, 82(11): 1857-1863
Xedzro C, Shimamoto T, Yu L S, et al. Emergence of colistin-resistant Enterobacter cloacae and Raoultella ornithinolytica carrying the phosphoethanolamine transferase gene, mcr-9, derived from vegetables in Japan[J]. Microbiology Spectrum, 2023, 11(6): e0106323
Mancuso G, Midiri A, Gerace E, et al. Bacterial antibiotic resistance: The most critical pathogens[J]. Pathogens, 2021, 10(10): 1310
Ambreetha S, Marimuthu P, Mathee K, et al. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates[J]. Journal of Applied Microbiology, 2022, 132(4): 3226-3248
Zhang Y J, Hu H W, Chen Q L, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes[J]. Environment International, 2019, 130: 104912
Laborda P, Hernando-Amado S, Martínez J L, et al. Antibiotic Resistance in Pseudomonas[M]//Filloux A, Ramos J L. Pseudomonas aeruginosa: Biology, Pathogenesis and Control Strategies. Cham: Springer International Publishing, 2022: 117-143
Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing[J]. Current Opinion in Microbiology, 2014, 18: 96-104
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world?[J]. Clinical Microbiology Reviews, 2013, 26(2): 185-230
CDC. The biggest antibiotic-resistant threats in the U.S.[EB/OL]. (2022-07-15)[2024-03-12]. https://www.cdc.gov/drugresistance/biggest-threats.html
Zhao Y, Su J Q, An X L, et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut[J]. Science of the Total Environment, 2018, 621: 1224-1232
Lima T, Domingues S, Da Silva G J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events[J]. Veterinary Sciences, 2020, 7(3): 110
金淮, 常志州, 朱述钧. 畜禽粪便中人畜共患病原菌传播的公众健康风险[J]. 江苏农业科学, 2005, 33(3): 103-105 Jin H, Chang Z Z, Zhu S J. Public health risk of transmission of zoonotic pathogens in livestock manure[J]. Jiangsu Agricultural Sciences, 2005, 33(3): 103-105(in Chinese)
Sheng H J, Wang F, Xiang L L, et al. Environmental behavior and control of antibiotic resistance genes in soil[J]. Acta Petrologica Sinica, 2022, 60(1): 39-49
Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440
Liu W B, Ling N, Guo J J, et al. Dynamics of the antibiotic resistome in agricultural soils amended with different sources of animal manures over three consecutive years[J]. Journal of Hazardous Materials, 2021, 401: 123399
Pérez-Valera E, Kyselková M, Ahmed E, et al. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications[J]. Scientific Reports, 2019, 9(1): 6760
Xiao R H, Huang D L, Du L, et al. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks[J]. Science of the Total Environment, 2023, 869: 161855
Iwu C D, Okoh A I. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A review[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4407
程兆康, 杨金山, 吕敏, 等. 我国畜禽养殖业抗生素的使用特征及其环境与健康风险[J]. 农业资源与环境学报, 2022, 39(6): 1253-1262
Binh C T, Heuer H, Kaupenjohann M, et al. Diverse aadA gene cassettes on class 1 integrons introduced into soil via spread manure[J]. Research in Microbiology, 2009, 160(6): 427-433
Chen Q L, An X L, Zhu Y G, et al. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere[J]. Environmental Science & Technology, 2017, 51(14): 8149-8157
Guo Y J, Qiu T L, Gao M, et al. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species[J]. Journal of Hazardous Materials, 2021, 415: 125595
Chen Q L, Cui H L, Su J Q, et al. Antibiotic resistomes in plant microbiomes[J]. Trends in Plant Science, 2019, 24(6): 530-541
Zhang Z Y, Zhang Q, Wang T Z, et al. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 2022, 13(1): 1553
Rossi F, Rizzotti L, Felis G E, et al. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives[J]. Food Microbiology, 2014, 42: 232-243
Buchholz U, Bernard H, Werber D, et al. German outbreak of Escherichia coli O104: H4 associated with sprouts[J]. New England Journal of Medicine, 2011, 365(19): 1763-1770