Sun J C, Fang R C, Wang H, et al. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics[J]. Environment International, 2022, 158: 106941
Ahari H, Nowruzi B, Anvar A A, et al. The toxicity testing of cyanobacterial toxins in vivo and in vitro by mouse bioassay: A review[J]. Mini Reviews in Medicinal Chemistry, 2022, 22(8): 1131-1151
Min E K, Lee A N, Lee J Y, et al. Advantages of omics technology for evaluating cadmium toxicity in zebrafish[J]. Toxicological Research, 2021, 37(4): 395-403
Sprenger H, Kreuzer K, Alarcan J, et al. Use of transcriptomics in hazard identification and next generation risk assessment: A case study with clothianidin[J]. Food and Chemical Toxicology, 2022, 166: 113212
刘涛, 郭辰, 赵晓红. 毒理学研究中的体外细胞毒性评价[J]. 生命科学, 2014, 26(3): 319-324 Liu T, Guo C, Zhao X H. In vitro cytotoxicity evaluation in toxicology[J]. Chinese Bulletin of Life Sciences, 2014, 26(3): 319-324(in Chinese)
Bercu J P, Morinello E J, Sehner C, et al. Point of departure (PoD) selection for the derivation of acceptable daily exposures (ADEs) for active pharmaceutical ingredients (APIs)[J]. Regulatory Toxicology and Pharmacology, 2016, 79(Suppl 1): S48-S56
Russell W M S, Burch R L. The principles of humane experimental technique[J]. Medical Journal of Australia, 1960, 1(13): 500
Krewski D, Acosta D Jr, Andersen M, et al. Toxicity testing in the 21st Century: A vision and a strategy[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2010, 13(2-4): 51-138
Kumar P, Nagarajan A, Uchil P D. Analysis of cell viability by the MTT assay[J]. Cold Spring Harbor Protocols, 2018, 2018(6): 29858338
Batchelor R H, Zhou M J. Use of cellular glucose-6-phosphate dehydrogenase for cell quantitation: Applications in cytotoxicity and apoptosis assays[J]. Analytical Biochemistry, 2004, 329(1): 35-42
Karászi E, Jakab K, Homolya L, et al. Calcein assay for multidrug resistance reliably predicts therapy response and survival rate in acute myeloid leukaemia[J]. British Journal of Haematology, 2001, 112(2): 308-314
Sharma N, Arya G, Kumari R M, et al. Evaluation of anticancer activity of silver nanoparticles on the A549 human lung carcinoma cell lines through alamar blue assay[J]. Bio-protocol, 2019, 9(1): e3131
Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays[J]. Current Pharmaceutical Biotechnology, 2016, 17(14): 1213-1221
Guo M J, Lu B, Gan J L, et al. Apoptosis detection: A purpose-dependent approach selection[J]. Cell Cycle, 2021, 20(11): 1033-1040
Parton R G. Twenty years of traffic: A 2020 vision of cellular electron microscopy[J]. Traffic, 2020, 21(1): 156-161
Buranaamnuay K. The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols[J]. Open Veterinary Journal, 2021, 11(2): 251-269
Liu K J, Lehmann K P, Sar M, et al. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis[J]. Biology of Reproduction, 2005, 73(1): 180-192
Shakil M S, Rana Z, Hanif M, et al. Key considerations when using the sulforhodamine B assay for screening novel anticancer agents[J]. Anti-Cancer Drugs, 2022, 33(1): 6-10
Al-Nasiry S, Geusens N, Hanssens M, et al. The use of alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells[J]. Human Reproduction, 2007, 22(5): 1304-1309
Alvarez K L F, Poma-Acevedo A, Fernández-Sánchez M, et al. An EdU-based flow cytometry assay to evaluate chicken T lymphocyte proliferation[J]. BMC Veterinary Research, 2020, 16(1): 230
Jennings P. The future of in vitro toxicology[J]. Toxicology in vitro, 2015, 29(6): 1217-1221
Roden D, McLeod H, Relling M, et al. Pharmacogenomics[J]. The Lancet, 2019, 394: 521-532
van Hummelen P, Sasaki J. State-of-the-art genomics approaches in toxicology[J]. Mutation Research, 2010, 705(3): 165-171
Thomas R S, Allen B C, Nong A, et al. A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2007, 98(1): 240-248
Pinheiro E A, Fetterman K A, Burridge P W. hiPSCs in cardio-oncology: Deciphering the genomics[J]. Cardiovascular Research, 2019, 115(5): 935-948
Burridge P W, Li Y F, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity[J]. Nature Medicine, 2016, 22(5): 547-556
Hatherell S, Baltazar M T, Reynolds J, et al. Identifying and characterizing stress pathways of concern for consumer safety in next-generation risk assessment[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2020, 176(1): 11-33
House J S, Grimm F A, Klaren W D, et al. Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays[J]. ALTEX, 2022, 39(3): 388-404
Liang X F, Martyniuk C J, Simmons D B D. Are we forgetting the “proteomics” in multi-omics ecotoxicology?[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 36: 100751
Lee F, Shah I, Soong Y T, et al. Reproducibility and robustness of high-throughput S1500+ transcriptomics on primary rat hepatocytes for chemical-induced hepatotoxicity assessment[J]. Current Research in Toxicology, 2021, 2: 282-295
Harrill J, Shah I, Setzer R W, et al. Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions[J]. Current Opinion in Toxicology, 2019, 15: 64-75
Harrill J A, Everett L J, Haggard D E, et al. High-throughput transcriptomics platform for screening environmental chemicals[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2021, 181(1): 68-89
Webster A F, Chepelev N, Gagné R, et al. Impact of genomics platform and statistical filtering on transcriptional benchmark doses (BMD) and multiple approaches for selection of chemical point of departure (PoD)[J]. PLoS One, 2015, 10(8): e0136764
Titz B, Elamin A, Martin F, et al. Proteomics for systems toxicology[J]. Computational and Structural Biotechnology Journal, 2014, 11(18): 73-90
Prescher J A, Bertozzi C R. Chemical technologies for probing glycans[J]. Cell, 2006, 126(5): 851-854
Zhang Z P, Zhang Y, Li Y, et al. Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells[J]. Toxicology and Applied Pharmacology, 2022, 449: 116110
Rozanova S, Barkovits K, Nikolov M, et al. Quantitative mass spectrometry-based proteomics: An overview[J]. Methods in Molecular Biology, 2021, 2228: 85-116
Zhang Z R, Wu S, Stenoien D L, et al. High-throughput proteomics[J]. Annual Review of Analytical Chemistry, 2014, 7: 427-454
Carregari V C. Phosphopeptide enrichment techniques: A pivotal step for phosphoproteomic studies[J]. Advances in Experimental Medicine and Biology, 2022, 1382: 17-27
Riley N M, Bertozzi C R, Pitteri S J. A pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics[J]. Molecular & Cellular Proteomics, 2021, 20: 100029
Madeira C, Costa P M. Proteomics in systems toxicology[J]. Advances in Protein Chemistry and Structural Biology, 2021, 127: 55-91
Geng H R, Tan X T, Zhao M, et al. Proteomic analysis of zearalenone toxicity on mouse thymic epithelial cells[J]. Journal of Applied Toxicology, 2022, 42(4): 660-670
Li D P, Jiang L L, Hong Y J, et al. Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice[J]. Environmental Pollution, 2021, 268(Pt A): 115774
Caruso J A, Stemmer P M, Dombkowski A, et al. A systems toxicology approach identifies Lyn as a key signaling phosphoprotein modulated by mercury in a B lymphocyte cell model[J]. Toxicology and Applied Pharmacology, 2014, 276(1): 47-54
Sampadi B, Pines A, Munk S, et al. Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action[J]. Archives of Toxicology, 2020, 94(5): 1655-1671
Li Y, Zhang Z P, Jiang S H, et al. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment[J]. Chemosphere, 2023, 313: 137359
Lindon J C, Holmes E, Bollard M E, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis[J]. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 2004, 9(1): 1-31
Holmes E, Tang H R, Wang Y L, et al. The assessment of plant metabolite profiles by NMR-based methodologies[J]. Planta Medica, 2006, 72(9): 771-785
Nicholson J K, Lindon J C, Holmes E. 'Metabonomics': Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 1999, 29(11): 1181-1189
Bannuscher A, Hellack B, Bahl A, et al. Metabolomics profiling to investigate nanomaterial toxicity in vitro and in vivo[J]. Nanotoxicology, 2020, 14(6): 807-826
Canzler S, Schor J, Busch W, et al. Prospects and challenges of multi-omics data integration in toxicology[J]. Archives of Toxicology, 2020, 94(2): 371-388
Zhou X, Liu Z H. Unlocking plant metabolic diversity: A (pan)-genomic view[J]. Plant Communications, 2022, 3(2): 100300
Low T Y, Mohtar M A, Lee P Y, et al. Widening the bottleneck of phosphoproteomics: Evolving strategies for phosphopeptide enrichment[J]. Mass Spectrometry Reviews, 2021, 40(4): 309-333
Liu Z X, Wang Y B, Xue Y. Phosphoproteomics-based network medicine[J]. The FEBS Journal, 2013, 280(22): 5696-5704
Olesti E, González-Ruiz V, Wilks M F, et al. Approaches in metabolomics for regulatory toxicology applications[J]. The Analyst, 2021, 146(6): 1820-1834
Ciriello G, Miller M L, Aksoy B A, et al. Emerging landscape of oncogenic signatures across human cancers[J]. Nature Genetics, 2013, 45(10): 1127-1133
Holmgren G, Sartipy P, Andersson C X, et al. Expression profiling of human pluripotent stem cell-derived cardiomyocytes exposed to doxorubicin-integration and visualization of multi-omics data[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2018, 163(1): 182-195
Hsu C H, Tomiyasu H, Liao C H, et al. Genome-wide DNA methylation and RNA-seq analyses identify genes and pathways associated with doxorubicin resistance in a canine diffuse large B-cell lymphoma cell line[J]. PLoS One, 2021, 16(5): e0250013
Schlüter U, Meyer J, Ahrens A, et al. Exposure modelling in Europe: How to pave the road for the future as part of the European Exposure Science Strategy 2020-2030[J]. Journal of Exposure Science & Environmental Epidemiology, 2022, 32(4): 499-512
Brescia S, Alexander-White C, Li H Q, et al. Risk assessment in the 21st Century: Where are we heading?[J]. Toxicology Research, 2023, 12(1): 1-11
Paul Friedman K, Gagne M, Loo L H, et al. Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization[J]. Toxicological Sciences, 2020, 173(1): 202-225
Simmons S O, Fan C Y, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening[J]. Toxicological Sciences, 2009, 111(2): 202-225
Zhang Q, Bhattacharya S, Pi J B, et al. Adaptive posttranslational control in cellular stress response pathways and its relationship to toxicity testing and safety assessment[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2015, 147(2): 302-316
Bergamini G, Bell K, Shimamura S, et al. A selective inhibitor reveals PI3Kγ dependence of TH17 cell differentiation[J]. Nature Chemical Biology, 2012, 8: 576-582
Hendriks G, Derr R S, Misovic B, et al. The extended ToxTracker assay discriminates between induction of DNA damage, oxidative stress, and protein misfolding[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2016, 150(1): 190-203
Baltazar M T, Cable S, Carmichael P L, et al. A next-generation risk assessment case study for coumarin in cosmetic products[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2020, 176(1): 236-252
Martins C, Dreij K, Costa P M. The state-of-the art of environmental toxicogenomics: Challenges and perspectives of “omics” approaches directed to toxicant mixtures[J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4718
Portugal J, Mansilla S, Piña B. Perspectives on the use of toxicogenomics to assess environmental risk[J]. Frontiers in Bioscience (Landmark Edition), 2022, 27(10): 294
Vaquerizas J M, Kummerfeld S K, Teichmann S A, et al. A census of human transcription factors: Function, expression and evolution[J]. Nature Reviews Genetics, 2009, 10: 252-263
Satoda N, Shoji T, Wu Y L, et al. Value of FOXP3 expression in peripheral blood as rejection marker after miniature swine lung transplantation[J]. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 2008, 27(12): 1293-1301
Niu N, Xu S W, Xu Y N, et al. Targeting mechanosensitive transcription factors in atherosclerosis[J]. Trends in Pharmacological Sciences, 2019, 40(4): 253-266
Sauer U G, Deferme L, Gribaldo L, et al. The challenge of the application of omics technologies in chemicals risk assessment: Background and outlook[J]. Regulatory Toxicology and Pharmacology, 2017, 91(Suppl 1): S14-S26
Escher S E, Kamp H, Bennekou S H, et al. Towards grouping concepts based on new approach methodologies in chemical hazard assessment: The read-across approach of the EU-ToxRisk project[J]. Archives of Toxicology, 2019, 93(12): 3643-3667
Salit M, Woodcock J. MAQC and the era of genomic medicine[J]. Nature Biotechnology, 2021, 39(9): 1066-1067
Marx-Stoelting P, Braeuning A, Buhrke T, et al. Application of omics data in regulatory toxicology: Report of an international BfR expert workshop[J]. Archives of Toxicology, 2015, 89(11): 2177-2184
Carusi A, Davies M R, De Grandis G, et al. Harvesting the promise of AOPs: An assessment and recommendations[J]. The Science of the Total Environment, 2018, 628-629: 1542-1556
Tebby C, Gao W, Delp J, et al. A quantitative AOP of mitochondrial toxicity based on data from three cell lines[J]. Toxicology in vitro, 2022, 81: 105345
Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3): 730-741
Burden N, Sewell F, Andersen M E, et al. Adverse outcome pathways can drive non-animal approaches for safety assessment[J]. Journal of Applied Toxicology, 2015, 35(9): 971-975
Maxwell G, MacKay C, Cubberley R, et al. Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment[J]. Toxicology in vitro: An International Journal Published in Association with BIBRA, 2014, 28(1): 8-12
Spassova M A. Statistical approach to identify threshold and point of departure in dose-response data[J]. Risk Analysis: An Official Publication of the Society for Risk Analysis, 2019, 39(4): 940-956
Spassova M A, Miller D J, Nikolov A S. Kinetic modeling reveals the roles of reactive oxygen species scavenging and DNA repair processes in shaping the dose-response curve of KBrO3-induced DNA damage[J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 764375