马德金. 二恶英类化学物质的分类及其危害分析[J]. 科技传播, 2011, 3(5): 72-73 Ma D J. Classification and hazard analysis of dioxins-class chemicals [J]. Public Communication of Science & Technology, 2011, 3(5): 72-73 (in Chinese)
Mandal P K. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology [J]. Journal of Comparative Physiology B, 2005, 175(4): 221-230
吴明红, 李刚, 马静, 等. 新型有机污染物氯代多环芳烃的研究进展[J]. 自然杂志, 2010, 32(4): 217-223 Wu M H, Li G, Ma J, et al. Research progress on new type organic contaminants—Chlorinated polycyclic aromatic hydrocarbons [J]. Chinese Journal of Nature, 2010, 32(4): 217-223 (in Chinese)
Su G Y, Xia J, Liu H L, et al. Dioxin-like potency of HO-and MeO-analogues of PBDEs’ the potential risk through consumption of fish from Eastern China [J]. Environmental Science & Technology, 2012, 46(19): 10781-10788
Bock K W, Köhle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions [J]. Biochemical Pharmacology, 2006, 72(4): 393-404
Sun Y V, Boverhof D R, Burgoon L D, et al. Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences [J]. Nucleic Acids Research, 2004, 32(15): 4512-4523
夏洁. 二恶英类污染物的高通量生物检测技术研究及其在在环境监测中的应用[D]. 南京: 南京大学, 2013: 1-5, 12-13 Xia J. Development of a high throughput bio-analytical method of dioxin-like compounds and its application in environmental monitoring [D]. Nanjing: Nanjing University, 2013: 1-5, 12-13 (in Chinese)
Holsapple M P, Snyder N K, Wood S C, et al. A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: 1991 update [J]. Toxicology, 1991, 69(3): 219-255
Kerkvliet N I. AHR-mediated immunomodulation: The role of altered gene transcription [J]. Biochemical Pharmacology, 2009, 77(4): 746-760
Vorderstrasse B A, Bohn A A, Lawrence B P. Examining the relationship between impaired host resistance and altered immune function in mice treated with TCDD [J]. Toxicology, 2003, 188(1): 15-28
Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: Safeguarding barrier function [J]. Nature Reviews Gastroenterology & Hepatology, 2021, 18(8): 559-570
Stockinger B, di Meglio P, Gialitakis M, et al. The aryl hydrocarbon receptor: Multitasking in the immune system [J]. Annual Review of Immunology, 2014, 32: 403-432
Kobayashi D, Ahmed S, Ishida M, et al. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT [J]. Toxicology, 2009, 258(1): 25-32
Doi H, Baba T, Tohyama C, et al. Functional activation of arylhydrocarbon receptor (AhR) in primary T cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Chemosphere, 2003, 52(4): 655-662
Cho M K, Park J G, Iwata H, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin prompted differentiation to CD4+CD8-CD25+ and CD4+CD8+CD25+ Tregs and altered expression of immune-related genes in the thymus of chicken embryos [J]. Ecotoxicology and Environmental Safety, 2021, 211: 111947
Pang C F, Zhu C H, Zhang Y Y, et al. 2,3,7,8-tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell [J]. Toxicology Letters, 2019, 311: 49-57
Ito T, Inouye K, Fujimaki H, et al. Mechanism of TCDD-induced suppression of antibody production: Effect on T cell-derived cytokine production in the primary immune reaction of mice [J]. Toxicological Sciences, 2002, 70(1): 46-54
Mitchell K A, Lawrence B. T cell receptor transgenic mice provide novel insights into understanding cellular targets of TCDD: Suppression of antibody production, but not the response of CD8+ T cells, during infection with influenza virus [J]. Toxicology and Applied Pharmacology, 2003, 192(3): 275-286
Sulentic C E, Holsapple M P, Kaminski N E. Putative link between transcriptional regulation of IgM expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the aryl hydrocarbon receptor/dioxin-responsive enhancer signaling pathway [J]. The Journal of Pharmacology and Experimental Therapeutics, 2000, 295(2): 705-716
Lu H T, Crawford R B, Suarez-Martinez J E, et al. Induction of the aryl hydrocarbon receptor-responsive genes and modulation of the immunoglobulin M response by 2,3,7,8-tetrachlorodibenzo-p-dioxin in primary human B cells [J]. Toxicological Sciences, 2010, 118(1): 86-97
Choi J Y, Oughton J A, Kerkvliet N I. Functional alterations in CD11b(+)Gr-1(+) cells in mice injected with allogeneic tumor cells and treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. International Immunopharmacology, 2003, 3(4): 553-570
Xu H Y, Zhang X Y, Li H K, et al. Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae [J]. Aquatic Toxicology, 2018, 201: 99-108
Li X Y, Li N, Han Y N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of immunity in THP-1-derived macrophages and the possible mechanisms [J]. Environmental Pollution, 2021, 287: 117302
Bankoti J, Rase B, Simones T, et al. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells [J]. Toxicology and Applied Pharmacology, 2010, 246(1-2): 18-28
Bankoti J, Burnett A, Navarro S, et al. Effects of TCDD on the fate of naive dendritic cells [J]. Toxicological Sciences, 2010, 115(2): 422-434
Vorderstrasse B A, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the number and function of murine splenic dendritic cells and their expression of accessory molecules [J]. Toxicology and Applied Pharmacology, 2001, 171(2): 117-125
Lee J A, Hwang J A, Sung H N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates functional differentiation of mouse bone marrow-derived dendritic cells downregulation of RelB by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Toxicology Letters, 2007, 173(1): 31-40
Winzler C, Rovere P, Rescigno M, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures [J]. The Journal of Experimental Medicine, 1997, 185(2): 317-328
Wright E J, De Castro K P, Joshi A D, et al. Canonical and non-canonical aryl hydrocarbon receptor signaling pathways [J]. Current Opinion in Toxicology, 2017, 2: 87-92
Tang J S, Cait A, Li Y Y, et al. Practical approach to explore the effects of polyphenols on aryl hydrocarbon receptor regulated immune function [J]. Journal of Agricultural and Food Chemistry, 2021, 69(31): 8625-8633
Lahoti T S, Boyer J A, Kusnadi A, et al. Aryl hydrocarbon receptor activation synergistically induces lipopolysaccharide-mediated expression of proinflammatory chemokine (c-c motif) ligand 20 [J]. Toxicological Sciences, 2015, 148(1): 229-240
DiNatale B C, Schroeder J C, Francey L J, et al. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling [J]. The Journal of Biological Chemistry, 2010, 285(32): 24388-24397
Vogel C F A, Matsumura F. A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family [J]. Biochemical Pharmacology, 2009, 77(4): 734-745
Vogel C F A, Sciullo E, Matsumura F. Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines [J]. Biochemical and Biophysical Research Communications, 2007, 363(3): 722-726
Vogel C F A, Goth S R, Dong B, et al. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase [J]. Biochemical and Biophysical Research Communications, 2008, 375(3): 331-335
Li Q S, Harden J L, Anderson C D, et al. Tolerogenic phenotype of IFN-γ-induced IDO+ dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop [J]. Journal of Immunology, 2016, 197(3): 962-970
Blevins L K, Zhou J J, Crawford R, et al. TCDD-mediated suppression of nave human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ [J]. Cellular Signalling, 2020, 65: 109447
Phadnis-Moghe A S, Li J P, Crawford R B, et al. SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicology and Applied Pharmacology, 2016, 310: 41-50
Sulentic C E W, Kaminski N E. The long winding road toward understanding the molecular mechanisms for B-cell suppression by2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Toxicological Sciences, 2011, 120(suppl.1): S171-S191
Camacho I A, Hassuneh M R, Nagarkatti M, et al. Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity in peripheral T cells [J]. Toxicology, 2001, 165(1): 51-63
Camacho I A, Singh N, Hegde V L, et al. Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells [J]. Journal of Immunology, 2005, 175(1): 90-103
Wittner J, Schuh W. Krüppel-like factor 2 (KLF2) in immune cell migration [J]. Vaccines, 2021, 9(10): 1171
McMillan B J, McMillan S N, Glover E, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2 regulon during thymocyte development [J]. Journal of Biological Chemistry, 2007, 282(17): 12590-12597
Kimura A, Abe H, Tsuruta S, et al. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production [J]. International Immunology, 2014, 26(4): 209-220
Hammond J A, Hall A J, Dyrynda E A. Comparison of polychlorinated biphenyl (PCB) induced effects on innate immune functions in harbour and grey seals [J]. Aquatic Toxicology, 2005, 74(2): 126-138
Ross P, De Swart R, Addison R, et al. Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk? [J]. Toxicology, 1996, 112(2): 157-169
Sawyna J M, Spivia W R, Radecki K, et al. Association between chronic organochlorine exposure and immunotoxicity in the round stingray (Urobatis halleri) [J]. Environmental Pollution, 2017, 223: 42-50
Xiao C Y, Zhang Y F, Zhu F. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla paramamosain [J]. Environmental Pollution, 2021, 291: 118229
Schulze Stack A, Altman-Hamamdzic S, Morris P J, et al. Polychlorinated biphenyl mixtures (Aroclors) inhibit LPS-induced murine splenocyte proliferation in vitro [J]. Toxicology, 1999, 139(1-2): 137-154
Lyche J, Larsen H, Skaare J U, et al. Effects of perinatal exposure to low doses of PCB 153 and PCB 126 on lymphocyte proliferation and hematology in goat kids [J]. Journal of Toxicology and Environmental Health Part A, 2004, 67(11): 889-904
Voie Ø A, Fonnum F. Ortho substituted polychlorinated biphenyls elevate intracellular in human granulocytes [J]. Environmental Toxicology and Pharmacology, 1998, 5(2): 105-112
Voie Ø A, Wiik P, Fonnum F. Ortho-substituted polychlorinated biphenyls activate respiratory burst measured as luminol-amplified chemoluminescence in human granulocytes [J]. Toxicology and Applied Pharmacology, 1998, 150(2): 369-375
Kristoffersen A, Voie Ø A, Fonnum F. Ortho-substituted polybrominated biphenyls activate respiratory burst in granulocytes from humans [J]. Toxicology Letters, 2002, 129(1-2): 161-166
Voie Ø A, Tysklind M, Andersson P L, et al. Activation of respiratory burst in human granulocytes by polychlorinated biphenyls: A structure-activity study [J]. Toxicology and Applied Pharmacology, 2000, 167(2): 118-124
Sørmo E G, Larsen H J S, Johansen G M, et al. Immunotoxicity of polychlorinated biphenyls (PCB) in free-ranging gray seal pups with special emphasis on dioxin-like congeners [J]. Journal of Toxicology and Environmental Health, Part A, 2009, 72(3-4): 266-276
Levin M, De Guise S, Ross P S. Association between lymphocyte proliferation and polychlorinated biphenyls in free-ranging harbor seal (Phoca vitulina) pups from British Columbia, Canada [J]. Environmental Toxicology and Chemistry, 2005, 24(5): 1247-1252
Levin M, Gebhard E, Jasperse L, et al. Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (Pusa hispida) [J]. Environmental Research, 2016, 151: 244-250
Levin M, Morsey B, Mori C, et al. Specific non-coplanar PCB-mediated modulation of bottlenose dolphin and beluga whale phagocytosis upon in vitro exposure [J]. Journal of Toxicology and Environmental Health Part A, 2004, 67(19): 1517-1535
Levin M, Morsey B, Mori C, et al. Non-coplanar PCB-mediated modulation of human leukocyte phagocytosis: A new mechanism for immunotoxicity [J]. Journal of Toxicology and Environmental Health Part A, 2005, 68(22): 1977-1993
Rousselet E, Levin M, Gebhard E, et al. Polychlorinated biphenyls (PCBs) modulate both phagocytosis and NK cell activity in vitro in juvenile loggerhead sea turtles (Caretta caretta) [J]. Journal of Toxicology and Environmental Health Part A, 2017, 80(10-12): 556-561
Cary T L, Karasov W H. Larval exposure to polychlorinated biphenyl-126 led to a long-lasting decrease in immune function in postmetamorphic juvenile northern leopard frogs, Lithobates pipiens [J]. Environmental Toxicology and Chemistry, 2022, 41(1): 81-94
赵婷, 茆广华, 冯伟伟, 等. 类二噁英多氯联苯致成年小鼠免疫毒性效应及机制研究[C]. 中国毒理学会计算毒理专业委员会. 第二次全国计算毒理学学术会议暨中国毒理学会第一届计算毒理专业委员会第二次会议会议摘要. 兰州: 中国毒理学会计算毒理专业委员会, 2018: 94-95
Du F, Zhao T, Ji H C, et al. Dioxin-like (DL-) polychlorinated biphenyls induced immunotoxicity through apoptosis in mice splenocytes via the AhR mediated mitochondria dependent signaling pathways [J]. Food and Chemical Toxicology, 2019, 134: 110803
Duffy-Whritenour J E, Kurtzman R Z, Kennedy S, et al. Non-coplanar polychlorinated biphenyl (PCB)-induced immunotoxicity is coincident with alterations in the serotonergic system [J]. Journal of Immunotoxicology, 2010, 7(4): 318-326
Miyata M, Furukawa M, Takahashi K, et al. Mechanism of 7,12-dimethylbenzanthracene-induced immunotoxicity: Role of metabolic activation at the target organ [J]. Japanese Journal of Pharmacology, 2001, 86(3): 302-309
Guan S, Huang Y X, Feng Z, et al. The toxic effects of benzopyrene on activated mouse T cells in vitro [J]. Immunopharmacology and Immunotoxicology, 2017, 39(3): 117-123
Phalen L J, Köllner B, Leclair L A, et al. The effects of benzopyrene on leucocyte distribution and antibody response in rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology, 2014, 147: 121-128
Davila D R, Romero D L, Burchiel S W. Human T cells are highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by α-naphthoflavone [J]. Toxicology and Applied Pharmacology, 1996, 139(2): 333-341
Jeon T W, Jin C H, Lee S K, et al. In vivo and in vitro immunosuppressive effects of benzofluoranthene in female Balb/c mice [J]. Journal of Toxicology and Environmental Health, Part A, 2005, 68(23-24): 2033-2050
Lauer F T, Walker M K, Burchiel S W. Dibenzochrysene (DBC) suppresses antibody formation in spleen cells following oral exposures of mice [J]. Journal of Toxicology and Environmental Health, Part A, 2013, 76(1): 16-24
Smith D C, Smith M J, White K L. Systemic immunosuppression following a single pharyngeal aspiration of 1,2:5,6-dibenzanthracene in female B6C3F1 mice [J]. Journal of Immunotoxicology, 2010, 7(3): 219-231
Laupeze B, Amiot L, Sparfel L, et al. Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells [J]. Journal of Immunology, 2002, 168(6): 2652-2658
van Grevenynghe J, Rion S, Le Ferrec E, et al. Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages [J]. Journal of Immunology, 2003, 170(5): 2374-2381
Xie J, Zhao C F, Han Q, et al. Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada martensii [J]. Fish & Shellfish Immunology, 2017, 63: 237-244
Tian Y M, Pan L Q, Miao J J, et al. The mechanism of apoptosis of Chlamys farreri hemocytes under benzopyrene stress in vitro [J]. Science of the Total Environment, 2021, 794: 148731
Davila D R. Protein tyrosine kinase activation by polycyclic aromatic hydrocarbons in human HPB-ALL T cells [J]. Journal of Toxicology and Environmental Health, Part A, 1999, 56(4): 249-261
Tewari P, Roy R, Mishra S, et al. Benzanthrone induced immunotoxicity via oxidative stress and inflammatory mediators in Balb/c mice [J]. Immunobiology, 2015, 220(3): 369-381
Bhargava A, Kumari R, Khare S, et al. Mapping the mitochondrial regulation of epigenetic modifications in association with carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbon exposure [J]. International Journal of Toxicology, 2020, 39(5): 465-476
Fowles J R, Fairbrother A, Baecher-Steppan L, et al. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice [J]. Toxicology, 1994, 86(1-2): 49-61
Bondy G S, Lefebvre D E, Aziz S, et al. Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat [J]. Environmental Toxicology, 2013, 28(4): 215-228
Martin P A, Mayne G J, Bursian F S J, et al. Immunotoxicity of the commercial polybrominated diphenyl ether mixture DE-71 in ranch mink (Mustela vison) [J]. Environmental Toxicology and Chemistry, 2007, 26(5): 988-997
Fernie K J, Mayne G, Laird Shutt J, et al. Evidence of immunomodulation in nestling American kestrels (Falco sparverius) exposed to environmentally relevant PBDEs [J]. Environmental Pollution, 2005, 138(3): 485-493
Lv Q Y, Wan B, Guo L H, et al. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: Apoptosis and immune cell dysfunction [J]. Chemosphere, 2015, 120: 621-630
Hennigar S R, Myers J L, Tagliaferro A R. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro [J]. Experimental Biology and Medicine, 2012, 237(4): 429-434
Rajput I R, Xiao Z Y, Sun Y J, et al. Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response [J]. Aquatic Toxicology, 2018, 203: 1-9
Huang Y, Rajput I R, Sanganyado E, et al. Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin: An in vitro study [J]. Chemosphere, 2020, 254: 126717
Subbaramaiah K, Cole P A, Dannenberg A J. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and-independent mechanisms [J]. Cancer Research, 2002, 62(9): 2522-2530
Ricciotti E, FitzGerald G A. Prostaglandins and inflammation [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31(5): 986-1000