ZHU L, YU J, WANG X. Oxidation treatment of diesel soot particulate on CexZr1-xO2[J]. Journal of Hazardous Materials, 2007, 140(1):205-210.
AMBROGIO M, SARACCO G, SPECCHIA V. Combining filtration and catalytic combustion in particulate traps for diesel exhaust treatment[J]. Chemical Engineering Science, 2001, 56(4):1613-1621.
CALLÉN M S, ITURMENDI A, LÓPEZ J M, et al. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model[J]. Environmental Science & Pollution Research, 2014, 21(3):2064-2076.
CIAMBELLI P, PALMA V, RUSSO P, et al. Deep filtration and catalytic oxidation:An effective way for soot removal[J]. Catalysis Today, 2002, 73(3):363-370.
杨铮铮, 黎云祥, 廖运文, 等. Pt/SiO2-Al2O3抗硫型柴油车尾气净化氧化催化剂的制备及性能[J]. 环境化学, 2016, 35(8):1682-1689. YANG Z Z, LI Y X, LIAO Y W, et al. Preparation and properties of the Pt/SiO2-Al2O3 sulfur resistance diesel oxidation catalyst[J]. Environmental Chemistry, 2016, 35(8):1682-1689(in Chinese).
YANG Z, LI J, ZHANG H, et al. Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO2-YOx diesel oxidation catalyst under simulative diesel exhaust conditions[J]. Catalysis Science & Technology, 2015, 5(4):2358-2365.
YANG Z Z, ZHANG N, CAO Y, et al. Effect of yttria in Pt/TiO2 on sulfur resistance diesel oxidation catalysts:Enhancement of low-temperature activity and stability[J].Catalysis Science & Technology, 2014, 4(9):3032-3043.
YANG Z Z, YANG Y, ZHAO M, et al. Enhanced sulfur resistance of Pt-Pd/CeO2-ZrO2-Al2O3 commercial diesel oxidation catalyst by SiO2 surface cladding[J]. Acta Physico-Chimica Sinica, 2014, 30(6):1187-1193.
杨铮铮, 陈永东, 赵明, 等. 具有低SO2氧化活性的Pt/ZrxTi1-xO2柴油车氧化催化剂的制备及性能[J]. 催化学报, 2012, 33(5):819-826. YANG Z Z, CHEN Y D, ZHAO M,et al. Preparation and properties of Pt/ZrxTi1-xO2 catalysts with low-level SO2 oxidation activity for diesel oxidation[J]. Chinese Journal of Catalysis, 2012, 33:819-826(in Chinese).
ZHANG N, YANG Z Z, CHEN Z, et al. Synthesis of sulfur-resistant TiO2-CeO2 composite and its catalytic performance in the oxidation of a soluble organic fraction from diesel exhaust[J]. Catalysts, 2018, 8(6):246.
JOHNSON T, JOSHI A. Review of vehicle engine efficiency and emissions[J]. SAE Int. J. Engines, 2018, 11(6):1307-1330.
MUL G, KAPTEIJN F, MOULIJN J A. Catalytic oxidation of model soot by metal chlorides[J]. Applied Catalysis B Environmental, 1997, 12(1):33-47.
李永昕, 郭玉华, 冀永强. M/(MgO)<i>y(CeO2)(1-y) (MNi, Co, Cu)催化剂的催化甲烷燃烧性能[J]. 物理化学学报, 2005, 21(5):468-473. LI Y X, GUO Y H, JI Y Q. Catalytic activity of M/(MgO)y(CeO2)(1-y) (MNi, Co, Cu) catalysts for methane combustion[J]. Acta Physico-chimica Sinica, 2005, 21(5):468-473(in Chinese).
OTSUKA K, WANG Y, SUNADA E, et al. Direct partial oxidation of methane to synthesis gas by cerium oxide[J]. Journal of Catalysis, 1998, 175(2):152-160.
JUNG C R, HAN J, NAM S W, et al. Selective oxidation of CO over CuO-CeO2 catalyst:Effect of calcination temperature[J]. Catalysis Today, 2004, 93-95(3):183-190.
HAMOUDI S, LARACHI F, ADNOT A, et al. Characterization of spent MnO2/CeO2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS[J]. Journal of Catalysis, 1999, 185(2):333-344.
LAMONIER C, PONCHEL A, D'HUYSSER A, et al. Studies of the cerium-metal-oxygen-hydrogen system (metal=Cu, Ni)[J]. Catalysis Today, 1999, 50(2):247-259.
KIM H Y, LEE H M, HENKELMAN G. CO oxidation mechanism on CeO2-supported Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(3):1560-1570.
KIM H Y, HENKELMAN G. CO Oxidation at the interface between doped CeO2 and supported Au nanoclusters[J]. Journal of Physical Chemistry Letters, 2012, 3(16):2194-2199.
WU X, LIU S, WENG D, et al. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation:Activity and thermal stability[J]. Journal of Hazardous Materials, 2011, 187(1):283-290.
TANG Q, DU J, XIE B, et al. Rare earth metal modified three dimensionally ordered macroporous MnOx-CeO2 catalyst for diesel soot combustion[J]. Journal of Rare Earths, 2018,36(1):64-71.
YU X H, LI J M, WEI Y C, et al. Three-dimensionally ordered macroporous MnxCe1-xOδ and Pt/Mn0.5Ce0.5Oδ catalysts:Synthesis and Catalytic Performance for Soot Oxidation[J]. Industrial & Engineering Chemistry Research, 2014, 53(23):9653-9664.
MACHIDA M, UTO M, KUROGI D, et al. MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx[J]. Chemistry of Materials, 2000, 12(10):3158-3164.
SHE Y, ZHENG Q, LI L, et al. Rare earth oxide modified CuO/CeO2 catalysts for the water-gas shift reaction[J]. International Journal of Hydrogen Energy, 2009, 34(21):8929-8936.
赵晓兵, 靳超, 张跃, 等. Ce(1-x)MnxO(2-δ)-凹凸棒石(Ce(1-x)MnxO(2-δ)-ATP)纳米复合材料的制备及催化性能[J]. 中国有色金属学报,2011,21(7):1580-1586. ZHAO X B, JIN C, ZHANG Y, et al. Preparation and catalytic properties of Ce(1-x)MnxO(2-δ)-attapulgite nanocomposite materials[J]. Chinese Journal of Nonferrous Metals, 2011, 21(7):1580-1586(in Chinese).
TERRIBILE D, TROVARELLI A, LEITENBURG C D, et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions[J]. Catalysis Today, 1999, 47(1-4):133-140.
赵明, 王海蓉, 陈山虎, 等. CeO2-ZrO2-Al2O3的制备及其负载钯三效催化剂的催化性能[J]. 催化学报, 2010, 31(4):429-434. ZHAO M, WANG H R, CHEN S H, et al. Preparation of CeO2-ZrO2-Al2O3 and catalytic performance of palladium-based three-way catalyst[J]. Chinese Journal of Catalysis, 2010, 31(4):429-434(in Chinese).
WEI Y, WU Q, XIONG J, et al. Fabrication of ultrafine Pd nanoparticles on 3D ordered macroporous TiO2 for enhanced catalytic activity during diesel soot combustion[J]. Chinese Journal of Catalysis, 2018, 39(4):606-612.
BURROUGHS P, HAMNETT A, ORCHARD AF, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. Journal of the Chemical Society Dalton Transactions, 1976, 17(17):1686-1698.
楚英豪, 盖志谱, 王天泽, 等. Ce掺杂对Mn/ACN催化剂低温NH3-SCR脱硝活性的影响[J]. 工程科学与技术, 2015, 47(3):180-186. CHU Y H, GAI Z P, WANG T Z, et al. Effect of Ce doping on Mn/ACN catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(3):180-186(in Chinese).
WU X, XU L, WENG D. The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ[J]. Applied Surface Science, 2004, 221(1):375-383.
LARSSON P O, ANDERSSON A. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania[J]. Journal of Catalysis, 1998, 179(1):72-89.
ZHANG G, SHEN Z, MI L, et al. Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids[J]. Journal of Physical Chemistry B, 2006, 110(51):25782-25790.
LUO J Y, MING M, XIANG L, et al. Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts:Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation[J]. Journal of Catalysis, 2008, 254(2):310-324.
QI G, YANG R T, CHANG R. MnOx-CeO mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B Environmental, 2004, 51(2):93-106.
YANG Y, YANG Z, XU H, et al. Influence of La on CeO2-ZrO2 catalyst for oxidation of soluble organic fraction from diesel exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(12):2358-2365.
ZHAN W C, ZHANG X Y, GUO Y L, et al. Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation[J]. Journal of Rare Earths, 2014, 32(2):146-152.
SUDARSANAM P, MALLESHAM B, REDDY P S, et al. Nano-Au/CeO2 catalysts for CO oxidation:Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity[J]. Applied Catalysis B:Environmental, 2014, 144:900-908.
KATTA L, SUDARSANAM P, MALLESHAM B, et al. Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid[J]. Catalysis Science & Technology, 2012, 2(5):995-1004.
HE J, REDDY G K, THIEL S W, et al. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. Journal of Physical Chemistry C, 2011, 115(49):24300-24309.
LIN X T, LI S J, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B:Environmental, 2018, 223:91-102.
SIVACHANDIRAN L, THEVENET F, ROUSSEAU A. Isopropanol removal using MnXOY packed bed non-thermal plasma reactor:Comparison between continuous treatment and sequential sorption/regeneration[J]. Chemical Engineering Journal, 2015, 270:327-335.
LI H, QI G, TANA, et al. Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide[J]. Applied Catalysis B Environmental, 2011, 103(1):54-61.
HE H, LIN X, LI S, et al. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Applied Catalysis B Environmental, 2018, 223:134-142.
CASAPU M, KRÖCHER O, MEHRING M, et al. Characterization of Nb-containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry C, 2010, 114(21):9791-9801.
YANG Z, NA Z, CAO Y, et al. Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO2 sulfur-resistant diesel oxidation catalysts[J]. Rsc Advances, 2017, 7(31):19318-19329.
RAMANA S, RAO B G, VENKATASWAMY P, et al. Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol[J]. Journal of Molecular Catalysis A Chemical, 2016, 415:113-121.
ZHANG C, CHAO W, ZHAN W, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts[J]. Applied Catalysis B Environmental, 2013, 129(3):509-516.
BUENO-LÓPEZ A, KRISHNA K, MAKKEE M, et al. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2[J]. Journal of Catalysis, 2005, 230(1):237-248.
ANDANA T, PIUMETTI M, BENSAID S, et al. CO and Soot oxidation over Ce-Zr-Pr oxide catalysts[J]. Nanoscale Research Letters, 2016, 11(1):278.
SATO T, KOMANOYA T. Selective oxidation of alcohols with molecular oxygen catalyzed by Ru/MnOx/CeO under mild conditions[J]. Catalysis Communications, 2009, 10(7):1095-1098.
VENKATASWAMY P, JAMPAIAH D, RAO K N, et al. Nanostructured Ce0.7Mn0.3O2-δ and Ce0.7Fe0.3O2-δ solid solutions for diesel soot oxidation[J]. Applied Catalysis A General, 2014, 488:1-10.
LI K, HUA W, WEI Y, et al. Transformation of methane into synthesis gas using the redox property of Ce-Fe mixed oxides:Effect of calcination temperature[J]. International Journal of Hydrogen Energy, 2011, 36(5):3471-3482.
HE C, YU Y, CHEN C, et al. Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J]. Rsc Advances, 2013, 3(42):19639-19656.
LIN F, WU X D, LIU S, et al. Preparation of MnOx-CeO2-Al2O3 mixed oxides for NOx-assisted soot oxidation:Activity, structure and thermal stability[J]. Chemical Engineering Journal, 2013, 226(24):105-112.
LIAO Y, FU M, CHEN L, et al. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catalysis Today, 2013, 216(6):220-228.
WU X, LIU S, WENG D, et al. MnOx-CeO2-Al2O3 mixed oxides for soot oxidation:activity and thermal stability[J]. Journal of Hazardous Materials, 2011, 187(1):283-290.
LIANG Q, WU X D, WENG D, et al. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation[J]. Catalysis Today, 2008, 139(1):113-118.
SHAN W J, MA N, YANG J L, et al. Catalytic oxidation of soot particulates over MnOx-CeO2 oxides prepared by complexation-combustion method[J]. Journal of Natural Gas Chemistry, 2010, 19(1):86-90.