[1] |
Tian J Y, Chen Z L, Nan J, et al. Integrative membrane coagulation adsorption bioreactor (MCABR) for enhanced organic matter removal in drinking water treatment[J]. Journal of Membrane Science, 2010, 352(1/2):205-212
|
[2] |
Li M A, Feng C P, Zhang Z Y, et al. Treatment of nitrate contaminated water using an electrochemical method[J]. Bioresource Technology, 2010, 101(16):6553-6557
|
[3] |
Sani B, Basile E, Rossi L, et al. Magnetic ion exchange resin treatment for drinking water production[J]. Journal of Water Supply Research and Technology-Aqua, 2009, 58(1):41-50
|
[4] |
Godino-Salido M L, Lopez-Garzon R, Arranz-Mascaros P, et al. Study of the adsorption capacity to Co2+, Ni2+ and Cu2+ ions of an active carbon/functionalized polyamine hybrid material[J]. Polyhedron, 2009, 28(17):3781-3787
|
[5] |
Szlachta M, Adamski W. Application of adsorption on powdered active carbon for the removal of dissolved organic substances from surface water[J]. Ochrona Srodowiska, 2009, 31(2):61-66
|
[6] |
Lim S F, Zheng Y M, Zou S W, et al. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study[J]. Environmental Science & Technology, 2008, 42(7):2551-2556
|
[7] |
Lim S F, Zheng Y M, Chen J P. Organic arsenic adsorption onto a magnetic sorbent[J]. Langmuir, 2009, 25(9):4973-4978
|
[8] |
Viswanathan N, Sundaram C S, Meenakshi S. Removal of fluoride from aqueous solution using protonated chitosan beads[J]. Journal of Hazardous Materials, 2009, 161(1):423-430
|
[9] |
Liu X W, Hu Q Y, Fang Z, et al. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal Ion removal[J]. Langmuir, 2009, 25(1):3-8
|
[10] |
Brunson L R, Sabatini D A. An evaluation of fish bone char as an appropriate arsenic and fluoride removal technology for emerging regions[J]. Environmental Engineering Science, 2009, 26(12):1777-1784
|
[11] |
Liao X P, Shi B. Adsorption of fluoride on zirconium (Ⅳ)-impregnated collagen fiber[J]. Environmental Science & Technology, 2005, 39(12):4628-4632
|
[12] |
Baek D H, Ki C S, Um I C, et al. Metal ion adsorbability of electrospun wool Keratose/Silk fibroin blend nanofiber mats[J]. Fibers and Polymers, 2007, 8(3):271-277
|
[13] |
Cruz-Guzman M, Celis R, Hermosin M C, et al. Adsorption of the herbicide simazine by montmorillonite modified with natural organic cations[J]. Environmental Science & Technology, 2004, 38(1):180-186
|
[14] |
Kim U J, Kuga S. Polyallylamine-grafted cellulose gel as high-capacity anion-exchanger[J]. Journal of Chromatography A, 2002, 946(1/2):283-289
|
[15] |
Alila S, Aloulou F, Beneventi D, et al. Self-aggregation of cationic surfactants onto oxidized cellulose fibers and coadsorption of organic compounds[J]. Langmuir, 2007, 23(7):3723-3731
|
[16] |
Aloulou F, Boufi S, Labidi J. Modified cellulose fibres for adsorption of organic compound in aqueous solution[J]. Separation and Purification Technology, 2006, 52(2):332-342
|
[17] |
Tashiro T, Shimura Y. Removal of mercuric ions by systems based on cellulose derivatives[J]. Journal of Applied Polymer Science, 1982, 27(2):747-756
|
[18] |
Gupta K C, Khandekar K. Temperature-responsive cellulose by ceric(Ⅳ) ion-initiated graft copolymerization of N-isopropylacrylamide[J]. Biomacromolecules, 2003, 4(3):758-765
|
[19] |
Gupta K C, Sahoo S, Khandekar K. Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium[J]. Biomacromolecules, 2002, 3(5):1087-1094
|
[20] |
Gupta K C, Sahoo S. Graft copolymerization of acrylonitrile and ethyl methacrylate comonomers on cellulose using ceric ions[J]. Biomacromolecules, 2001, 2(1):239-247
|
[21] |
Gupta K C, Sahoo S. Grafting of acrylonitrile and methyl methacrylate from their binary mixtures on cellulose using ceric ions[J]. Journal of Applied Polymer Science, 2001, 79(5):767-778
|
[22] |
Hashem A. Amidoximated sunflower stalks (ASFS) as a new adsorbent for removal of Cu (Ⅱ) from aqueous solution[J]. Polymer-Plastics Technology and Engineering, 2006, 45(1):35-42
|
[23] |
Shibi I G, Anirudhan T S. Synthesis, characterization, and application as a mercury(Ⅱ) sorbent of banana stalk (Musa paradisiaca)-Polyacrylamide grafted copolymer bearing carboxyl groups[J]. Industrial & Engineering Chemistry Research, 2002, 41(22):5341-5352
|
[24] |
Bao Xiu Z, Peng W, Tong Z, et al. Preparation and adsorption performance of a cellulosic-adsorbent resin for copper(Ⅱ)[J]. Journal of Applied Polymer Science, 2006, 99(6):2951-2956
|
[25] |
Li X, Tang Y, Xuan Z, et al. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution[J]. Separation and Purification Technology, 2007, 55(1):69-75
|
[26] |
Saliba R, Gauthier H, Gauthier R. Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials[J]. Adsorption Science & Technology, 2005, 23(4):313-322
|
[27] |
Guclu G, Gurdag G, Ozgumus S. Competitive removal of heavy metal ions by cellulose graft copolymers[J]. Journal of Applied Polymer Science, 2003, 90(8):2034-2039
|
[28] |
O'Connell D W, Birkinshaw C, O'Dwyer T F, A chelating cellulose adsorbent for the removal of Cu(Ⅱ) from aoueous solutions[J]. Journal of Applied Polymer Science, 2006, 99(6):2888-2897
|
[29] |
O'Connell D W, Birkinshaw C, O'Dwyer T F. A modified cellulose adsorbent for the removal of nickel(Ⅱ) from aqueous solutions[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(11):1820-1828
|
[30] |
O'Connell D W, Birkinshaw C, O'Dwyer T F. Removal of lead(Ⅱ) ions from aqueous solutions using a modified cellulose adsorbent[J]. Adsorption Science & Technology, 2006, 24(4):337-347
|
[31] |
Zhao Y P, Huang M S, Wu W, et al. Synthesis of the cotton cellulose based Fe(Ⅲ)-loaded adsorbent for arsenic(Ⅴ) removal from drinking water[J]. Desalination, 2009, 249(3):1006-1011
|
[32] |
Mandal S, Mayadevi S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution[J]. Chemosphere, 2008, 72(6):995-998
|
[33] |
Anirudhan T S, Unnithan M R. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery[J]. Chemosphere, 2007, 66(1):60-66
|
[34] |
Deniz F, Saygideger S D. Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by paulownia tomentosa steud. Leaf powder as a low-cost natural biosorbent[J]. Bioresource Technology, 2010, 101(14):5137-5143
|
[35] |
Boufi S, Belgacem M N. Modified cellulose fibres for adsorption of dissolved organic solutes[J]. Cellulose, 2006, 13(1):81-94
|
[36] |
Aloulou F, Boufi S, Belgacem N, et al. Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers[J]. Colloid and Polymer Science, 2004, 283(3):344-350
|
[37] |
Luo X G, Zhang L N, High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon[J]. Journal of Hazardous Materials, 2009, 171(1/3):340-347
|