[1] Cheng C H, Lehmann J, Thies J E, et al. Stability of black carbon in soils across a climatic gradient[J]. Journal of geophysical research, 2008,113: G02027
[2] Liang B Q, Lehmann J, Solomon D, et al. Stability of biomass-derived black carbon in soils[J]. Geochimica et Cosmochimica Acta, 2008,72: 6069-6078
[3] Mašek O, Brownsort P, Cross A, et al. Influence of production conditions on the yield and environmental stability of biochar[J]. Fuel, 2013, 103:151-155
[4] Masiello C A, Druffel E R M. Organic and black carbon C-13 and C-14 through the Santa Monica Basin sediment oxic-anoxic transition[J]. Geophysical Research Letters, 2003, 30(4): 1185
[5] Pessenda L C R, Gouvia S E M, Aravena R. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with C-14 ages of fossil charcoal[J]. Radiocarbon, 2001, 43: 595-601
[6] Masiello C A, Druffel E R M. Black carbon in deep-sea sediments[J]. Science, 1998, 280: 1911-1913
[7] Hamer U, Marschner B, Brodowski S, et al. Interactive priming of black carbon and glucose mineralization[J]. Organic Geochemistry, 2004, 35: 823-830
[8] Lehmann J. A handful of carbon[J]. Nature, 2007, 443: 143-144
[9] Lemhann J. Bio-energy in the black[J]. Frontiers in Ecology and the Enuironment, 2007, 5: 381-387
[10] Masiello C. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92: 201-213
[11] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37: 1477-1488
[12] Cheng C H, Lehmann J. Ageing of black carbon along a temperature gradient[J]. Chemosphere, 2009, 75: 1021-1027
[13] Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72: 1598-1610
[14] Nguyen B T, Lehmann J, Hockaday W C, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Enviroment Science Technology, 2010, 44: 3324-3331
[15] Mohamad Anas Nahil T W. Characterisation of activated carbons with high surface area and variable porosity produced from agricultural cotton Waste by chemical activation and co-activation[J]. Waste Biomass Valor, 2012, 10.1007/s12649-012-9109-7
[16] Lamparter A, Bachmann J, Goebel M O, et al. Carbon mineralization in soil: Impact of wetting-drying, aggregation and water repellency[J]. Geoderma, 2009, 150: 324-333
[17] Nguyen B T, Lehmann J. Blank carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40: 846-853
[18] Andrew R, Zimmerman. Abiotic and microbial oxidation of laboratory-produced black carbon(Biochar)[J]. Enviroment Science Technology, 2010, 44: 1295-1301
[19] Calvelo Pereira R, Kaal J, Camps Arbestain M, et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon[J]. Organic Geochemistry, 2011, 42:1331-1342
[20] Kamegawa K, Nishikubo K, Kodama M, et al. Oxidative degradation of carbon blacks with nitric acid Ⅱ. Formation of water-soluble polynuclear aromatic compounds[J]. Carbon, 2002, 40: 1447-1455
[21] Kamegawa K, Nishikubo K, Yoshida H. Oxidative degradation of carbon blacks with nitric acid(Ⅰ)-changes in pore and crystallographic strutures[J]. Carbon, 1998, 4: 433-441
[22] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America, 2006, 70(5): 1719-1730
[23] Logninow W, Wisniewski W, Strony W M, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20: 47-52
[24] 张齐生, 周建斌, 屈永标. 农林生物质的高效、无公害、资源化利用[J]. 林产工业, 2009, 36(1): 3-8
[25] Yoo G, Spomer A L, Wander M M. Regulation of carbon mineralization rates by soil structure and water in an agricultural field and a prairie-like soil[J]. Geoderma, 2006, 135: 16-25
[26] Chan K Y, Van Z L, Meazaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007, 45: 629-634
[27] Blair G J, Leffoy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australia Journal of Agricultural Research, 1995,46: 1459-1466
[28] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102: 3488-3497