[1] Horikoshi S, Miura T, Kajitani M, et al. Photodegradation of tetrahalobisphenol-A (X=Cl, Br) flame retardants and delineation of factors affecting the process[J]. Applied Catalysis B-Environmental, 2008, 84(3/4): 797-802
[2] Blanco E, Casais M C, Mejuto M C, et al. Approaches for the simultaneous extraction of tetrabromobisphenol A, tetrachlorobisphenol A, and related phenolic compounds from sewage sludge and sediment samples based on matrix solid-phase dispersion[J]. Analytical Chemistry, 2006, 78(8): 2772-2778
[3] Sun H, Shen O X, Wang X R, et al. Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay[J]. Toxicology In Vitro, 2009, 23(5): 950-954
[4] Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical And Biophysical Research Communications, 2002, 293(PⅡ S0006-291X(02)00262-01): 554-559
[5] Meerts I, Van Zanden J J, Luijks E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro[J]. Toxicological Sciences, 2000, 56(1): 95-104
[6] Fan Z L, Hu J Y, An W, et al. Detection and occurrence of chlorinated byproducts of bisphenol a, nonylphenol, and estrogens in drinking water of china: comparison to the parent compounds[J]. Environmental science & technology, 2013, 47(19): 10841-10850
[7] Yuan S Y, Chen S J, Chang B V. Anaerobic degradation of tetrachlorobisphenol-A in river sediment[J]. International Biodeterioration & Biodegradation, 2011, 65(1): 185-190
[8] Voordeckers J W, Fennell D E, Jones K, et al. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments[J]. Environmental Science & Technology, 2002, 36(4): 696-701
[9] 彭平安, 盛国英, 傅家谟.电子垃圾的污染问题[J]. 化学进展, 2009, (Z1): 550-557
[10] 刘艳, 党志, 刘云.一株硫酸盐还原菌DSRBa的分离鉴定及特性分析[J]. 农业环境科学学报, 2011, (01): 176-182
[11] 左剑恶, 肖晶华, 陈莉莉.氯代有机污染物在厌氧条件下还原脱氯的研究进展[J]. 环境污染治理技术与设备, 2003, (06): 43-48
[12] 吴宇澄, 王建军, 吴庆龙.基于引物的湖泊沉积物氨氧化细菌PCR扩增策略比较[J]. 环境科学, 2010, (09): 2178-2183
[13] Geets J, Borrernans B, Diels L, et al. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria[J]. Journal of Microbiological Methods, 2006, 66(2): 194-205
[14] Wagner M, Roger A J, Flax J L, et al. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration[J]. Journal of Bacteriology, 1998, 180(11): 2975-2982
[15] Livak K J, Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method[J]. Methods, 2001, 25(4): 402-408
[16] Staples C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review[J]. Chemosphere, 1997, 35(4): 667-749
[17] 刘文莉, 张珍, 朱连秋, 等.电子垃圾拆解地区土壤和植物中邻苯二甲酸酯分布特征[J]. 应用生态学报, 2010, (02): 489-494
[18] Nyholm J R, Lundberg C, Andersson P L. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil[J]. Environmental Pollution, 2010, 158(6SI): 2235-2240
[19] 丁维新, 蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1672-1679
[20] 夏大平, 陈鑫, 苏现波.氧化还原电位对低煤阶煤生物甲烷生成的影响[J]. 天然气工业, 2012, (11): 107-110, 125 -126
[21] 张希衡. 废水生物处理工程[M].北京: 中国环境科学出版社, 1984:15-23