[1] |
张长波,骆永明,吴龙华. 土壤污染物源解析方法及其应用研究进展[J]. 土壤,2007,39(2):190-195
|
[2] |
Wang Z L. Zinc oxide nanostructures: growth, properties, and applications[J]. Journal of Physics: Condensed Matter, 2004, 16: R829-R858
|
[3] |
Ma H B, Williams P L, Diamond S A. Ecotoxicity of manufactured ZnO nanopartilces-A review[J]. Environmental Pollution, 2013, 172: 76-85
|
[4] |
魏绍东. 纳米氧化锌的现状与发展[J]. 化工中间体,2006,11:6-14
|
[5] |
Gottschalk F, Sonderer T, Scholz RW, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43 (24): 9216-9222
|
[6] |
Badawy A M E, Luxton T P, Silva R G, et al. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions[J]. Environmetal Science & Technology, 2010, 44: 1260-1266
|
[7] |
Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerence (C60) nanoparticles in monovalent and divalent electrolyte solution[J]. Journal of Colloid and Interface Science, 2007, 309: 126-134
|
[8] |
Ballousha M, Manciulea A, Cumberland S, et al. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1875-1882
|
[9] |
Chen K L, Mylon S E, Elimelech M. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes[J]. Environmental Science & Technology, 2006, 40: 1516-1523
|
[10] |
French R A, Jacobson A R, Kim B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43: 1354-1359
|
[11] |
Bian S W, Mudunkotuwa I A, Rupasinghe T, et al. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid[J]. Langmuir, 2011, 27: 6059-6068
|
[12] |
Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19): 3527-3532
|
[13] |
Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4), 1461-1468
|
[14] |
Mudunkotuwa I A, Rupasinghe T, Wu C M, et al. Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid[J]. Langmuir, 2012, 28 (1): 396-403
|
[15] |
Reed R B, Ladner D A, Higgins C P, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices[J]. Environmental Toxicology and Chemistry, 2012, 31 (1): 93-99
|
[16] |
Meulenkamp E A. Size dependence of the dissolution of ZnO nanoparticles[J]. The Journal of Physical Chemistry B, 1998, 102 (40): 7764-7769
|
[17] |
Molina R, Al-Salama Y, Jurkschat K, et al. Potential environmental influence of amino acids on the behavior of ZnO nanoparticles[J]. Chemosphere, 2011, 83: 545-551
|
[18] |
Zhang Y, Chen Y S, Westerhoff P, et al. Stability of commercial metal oxide nanoparticles in water[J]. Water Research, 2008, 42(8/9): 2204-2212
|
[19] |
Zhang Y, Chen Y S, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43 (17): 4249-4257
|
[20] |
Zhou D X, Keller A A. Role of morphology in the aggregation kinetics of ZnO nanoparticles[J]. Water Research, 2010, 44 (9): 2948-2956
|
[21] |
Chinnapongse S L, MacCuspie R I, Hackley V A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters[J]. Science of Total Environment, 2001, 409: 2443-2450
|
[22] |
Shin Y H, Liu W S, Su Y F. Aggregation of stabilized TiO2 nanoparticles suspensions in the presence of inorganic ions[J]. Environmental Toxicology and Chemistry, 2012, 31 (8): 1693-1698
|
[23] |
Piccapietra F, Sigg L, Behra R. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater[J]. Environmental Science & Technology, 2012, 46: 818-825
|
[24] |
Fang J, Shan X Q, Wen B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution, 2009, 157: 1101-1109
|
[25] |
Gao B, Cao X D, Yan D, et al. Colloid deposition and release in soils and their association with heavy metals[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(4), 336-372
|
[26] |
Miao A J, Zhang X Y, Luo Z, et al. Zinc oxide-engineered nanoparticles: Dissolution and toxicity to marine phytoplankton[J]. Environmental Toxicology and Chemistry, 2010, 29 (12): 2814-2822
|
[27] |
Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J].Journal of Materials Chemistry, 2002, 12 (12), 3773-3778
|
[28] |
黄昌勇, 徐建明. 土壤学[M]. 第三版. 北京: 中国农业出版社, 2010: 354-363
|