[1] 张长波,骆永明,吴龙华. 土壤污染物源解析方法及其应用研究进展[J]. 土壤,2007,39(2):190-195
[2] Wang Z L. Zinc oxide nanostructures: growth, properties, and applications[J]. Journal of Physics: Condensed Matter, 2004, 16: R829-R858
[3] Ma H B, Williams P L, Diamond S A. Ecotoxicity of manufactured ZnO nanopartilces-A review[J]. Environmental Pollution, 2013, 172: 76-85
[4] 魏绍东. 纳米氧化锌的现状与发展[J]. 化工中间体,2006,11:6-14
[5] Gottschalk F, Sonderer T, Scholz RW, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43 (24): 9216-9222
[6] Badawy A M E, Luxton T P, Silva R G, et al. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions[J]. Environmetal Science & Technology, 2010, 44: 1260-1266
[7] Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerence (C60) nanoparticles in monovalent and divalent electrolyte solution[J]. Journal of Colloid and Interface Science, 2007, 309: 126-134
[8] Ballousha M, Manciulea A, Cumberland S, et al. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1875-1882
[9] Chen K L, Mylon S E, Elimelech M. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes[J]. Environmental Science & Technology, 2006, 40: 1516-1523
[10] French R A, Jacobson A R, Kim B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43: 1354-1359
[11] Bian S W, Mudunkotuwa I A, Rupasinghe T, et al. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid[J]. Langmuir, 2011, 27: 6059-6068
[12] Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19): 3527-3532
[13] Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4), 1461-1468
[14] Mudunkotuwa I A, Rupasinghe T, Wu C M, et al. Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid[J]. Langmuir, 2012, 28 (1): 396-403
[15] Reed R B, Ladner D A, Higgins C P, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices[J]. Environmental Toxicology and Chemistry, 2012, 31 (1): 93-99
[16] Meulenkamp E A. Size dependence of the dissolution of ZnO nanoparticles[J]. The Journal of Physical Chemistry B, 1998, 102 (40): 7764-7769
[17] Molina R, Al-Salama Y, Jurkschat K, et al. Potential environmental influence of amino acids on the behavior of ZnO nanoparticles[J]. Chemosphere, 2011, 83: 545-551
[18] Zhang Y, Chen Y S, Westerhoff P, et al. Stability of commercial metal oxide nanoparticles in water[J]. Water Research, 2008, 42(8/9): 2204-2212
[19] Zhang Y, Chen Y S, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43 (17): 4249-4257
[20] Zhou D X, Keller A A. Role of morphology in the aggregation kinetics of ZnO nanoparticles[J]. Water Research, 2010, 44 (9): 2948-2956
[21] Chinnapongse S L, MacCuspie R I, Hackley V A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters[J]. Science of Total Environment, 2001, 409: 2443-2450
[22] Shin Y H, Liu W S, Su Y F. Aggregation of stabilized TiO2 nanoparticles suspensions in the presence of inorganic ions[J]. Environmental Toxicology and Chemistry, 2012, 31 (8): 1693-1698
[23] Piccapietra F, Sigg L, Behra R. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater[J]. Environmental Science & Technology, 2012, 46: 818-825
[24] Fang J, Shan X Q, Wen B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution, 2009, 157: 1101-1109
[25] Gao B, Cao X D, Yan D, et al. Colloid deposition and release in soils and their association with heavy metals[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(4), 336-372
[26] Miao A J, Zhang X Y, Luo Z, et al. Zinc oxide-engineered nanoparticles: Dissolution and toxicity to marine phytoplankton[J]. Environmental Toxicology and Chemistry, 2010, 29 (12): 2814-2822
[27] Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J].Journal of Materials Chemistry, 2002, 12 (12), 3773-3778
[28] 黄昌勇, 徐建明. 土壤学[M]. 第三版. 北京: 中国农业出版社, 2010: 354-363