[1] Hughes M F. Arsenic toxicity and potential mechanisms of action[J]. Toxicol Lett, 2002, 133(1):1-16
[2] Chen L M, Liu Y N. Surface-Enhanced raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: Effect of metal ions[J]. Acs Applied Materials & Interfaces, 2011, 3(8):3091-3096
[3] Guerrini L, Rodriguez-Loureiro I, Correa-Duarte MA, et al.Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water[J]. Nanoscale, 2014, 6(14): 8368-8375
[4] Liu M, Wang Z, Zong S, et al.SERS detection and removal of mercury(Ⅱ)/silver(Ⅰ) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles[J]. Acs Applied Materials & Interfaces, 2014, 6(10): 7371-7379
[5] 刘文婧 杜晶晶 景传勇. 表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J]. 环境化学,2014,33(2):217-228
[6] Xu Z, Hao J, Li F, et al.Surface-enhanced Raman spectroscopy of arsenate and arsenite using Ag nanofilm prepared by modified mirror reaction[J]. Journal of Colloid and Interface Science, 2010, 347(1): 90-95
[7] Gao T, Wang Y Q, Wang K, et al. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS[J]. Acs Applied Materials & Interfaces Substrate, 2013, 5(15): 7308-7314
[8] Li S K, Yan Y X, Wang J L, et al. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate[J]. Nanoscale, 2013, 5(24): 12616-12623
[9] Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of Colloid and Interface Science, 2001, 234(1): 204-216
[10] Mulvihill M, Tao A, Benjauthrit K, et al.Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water[J]. Angewandte Chemie-International Edition, 2008, 47(34): 6456-6460
[11] Du J, Cui J, Jing C. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor[J]. Chemical Communications, 2014, 50(3): 347-349
[12] Bachate S P, Cavalca L, Andreoni V. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains[J]. Journal of Applied Microbiology, 2009, 107(1): 145-156
[13] Liao V H C, Chu Y J, Su Y C, et al. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan[J]. Journal of Contaminant Hydrology, 2011, 123(1-2): 20-29
[14] Matlakowska R, Drewniak L, Sklodowska A. Arsenic-hyper tolerant pseudomonads isolated from ancient gold and Copper-Bearing black shale Deposits[J]. Geomicrobiology Journal, 2008, 25(7-8): 357-362
[15] Ruta M, Pepi M, Gaggi C, et al. As(Ⅴ)-reduction to As(Ⅲ) by arsenic-resistant Bacillusspp bacterial strains isolated from low-contaminated sediments of the Oliveri-Tindari Lagoon, Italy[J]. Chemistry and Ecology, 2011, 27(3): 207-219
[16] Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Applied and Environmental Microbiology, 2005, 71(2): 599-608
[17] Tian H, Jing C. Genome sequence of the aerobic arsenate-reducing bacterium Pantoea sp. Strain IMH[J]. Genome Announcements, 2014, 2(2)
[18] Rosen B P. Biochemistry of arsenic detoxification[J]. FEBS Lett, 2002, 529(1): 86-92
[19] Wu X L, Miao B, Han J A, et al.Purification and enzymatic properties of arsenic resistance protein ArsH from heterogeneous expression in E. coli BL21[J]. T Nonferr Metal Soc, 2010, 20(10):1987-1992
[20] Mo H Y, Chen Q, Du J, et al.Ferric reductase activity of the Ars H Protein from acidithiobacillus ferrooxidans[J]. J Microbiol Biotechn 2011, 21(5): 464-469
[21] Hervas M, Lopez-Maury L, Leon P, et al.ArsH from the Cyanobacterium Synechocystis sp PCC 6803 is an efficient NADPH-Dependent quinone reductase[J]. Biochemistry-Us, 2012, 51(6): 1178-1187
[22] Neyt C, Iriarte M, Thi V H, et al. Virulence and arsenic resistance in yersiniae[J]. J Bacteriol, 1997, 179(3): 612-619