[1] Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews, 2012, 41(2):782-796
[2] Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602
[3] Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9):954-965
[4] Pumera M. Electrochemistry of graphene:New horizons for sensing and energy storage[J]. The Chemical Record, 2009, 9(4):211-223
[5] Yang W, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors:should you use nanotubes or graphene?[J]. AngewandteChemie International Edition, 2010, 49(12):2114-2138
[6] Nazir S, Hussain T, Ayub A, et al. Nanomaterials in combating cancer:therapeutic applications and developments[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2014, 10(1):19-34
[7] 焦芳, 周国强, 陈春英. 富勒烯化学修饰与生物医学应用研究进展[J]. 生态毒理学报, 2010, 5(4):469-480
[8] Makharza S, Cirillo G, Bachmatiuk A, et al. Graphene oxide-based drug delivery vehicles:functionalization, characterization, and cytotoxicity evaluation[J]. Journal of Nanoparticle Research, 2013, 15(12):1-26
[9] Liu Y, Zhao Y, Sun B, et al. Understanding the toxicity of carbon nanotubes[J]. Accounts of Chemical Research, 2012, 46(3):702-713
[10] Liu S, Zeng T, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:Membrane and oxidative stress[J]. ACS Nano, 2011, 5(9):6971-6980
[11] 董婷, 嵇源源, 王剑文. 活性氧参与多壁碳纳米管诱导的RAW264.7细胞毒性[J]. 生态毒理学报, 2013, 8(1):55-60
[12] 高素莲, 李秀娥, 翟淑梅, 等. 碳纳米管的细胞生物学效应[J]. 环境化学, 2008, 27(6):831-834
[13] 张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7):1268-1276
[14] 张亚, 周磊, 曾超, 等. 水体系中官能化多壁碳纳米管光致活性氧研究[J]. 环境化学, 2013, 32(7):1253-1256
[15] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
[16] Qu X, Alvarez P J J, Li Q. Photochemical transformation of carboxylatedmultiwalled carbon nanotubes:Role of reactive oxygen species[J]. Environmental Science & Technology, 2013, 47(24):14080-14088
[17] Gandra N, Chiu P L, Li W, et al. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogues[J]. The Journal of Physical Chemistry C, 2009, 113(13):5182-5185
[18] Yan L, Gu Z, Zhao Y. Chemical mechanisms of the toxicological properties of nanomaterials:Generation of intracellular reactive oxygen species[J]. Chemistry-An Asian Journal, 2013, 8(10):2342-2353
[19] Zou M Y, Zhang J D, Chen J W, et al. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water[J]. Environmental Science & Technology, 2012, 46(16):8887-8894
[20] Vikramaditya T, Sumithra K. New insights in the adsorption of oxygen molecules on single walled carbon nanotubes[J]. Computational Materials Science, 2013, 79:656-662
[21] Banerjee S, Bhattacharyya D. Electronic properties of nano-graphene sheets calculated using quantum chemical DFT[J]. Computational Materials Science, 2008, 44(1):41-45
[22] Casolo S, Løvvik O M, Martinazzo R, et al. Understanding adsorption of hydrogen atoms on graphene[J]. The Journal of Chemical Physics, 2009, 130(5):054704
[23] Tomasi J, Mennucci B, Cances E. The IEF version of the PCM solvation method:An overview of a new method addressed to study molecular solutes at the QM ab initio level[J]. Journal of Molecular Structure-Theochem 1999, 464:211-226
[24] Robles J, Lopez M J, Alonso J A. Modeling of the functionalization of single-wall carbon nanotubes towards its solubilization in an aqueous medium[J]. European Physical Journal D, 2011, 61:381-388
[25] Furche F, Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties[J]. Journal of Chemical Physics, 2002, 117 (74), 33-47.
[26] Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews, 1988, 88:899-926
[27] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian Inc, Wallingford CT, 2009.
[28] Stephens P. Physics and chemistry of fullerenes[M]. New York:Stony Brook, 1993
[29] 杨旭宇, 王贤保, 李静, 等. 氧化石墨烯的可控还原及结构表征[J]. 高等学校化学学报, 2012, 33(9):1902-1907
[30] Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of Colloid and Interface Science, 2003, 260(1):89-94
[31] Yamakoshi Y, Umezawa N, Ryu A, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines:O2- versus 1O2[J]. Journal of the American Chemical Society, 2003, 125(42):12803-12809
[32] Liao F, Saitoh Y, Miwa N. Anticancer effects of fullerene[C60] included in polyethylene glycol combined with visible light irradiation through ROS generation and DNA fragmentation on fibrosarcoma cells with scarce cytotoxicity to normal fibroblasts[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2011, 19(5):203-216
[33] Lide D R. CRC handbook of chemistry and physics (90th Edition) [M]. Florida:CRC press,2009