[1] |
陈来国, 蔡信德, 黄玉妹, 等. 废弃电容器封存点多氯联苯的含量和分布特征[J]. 中国环境科学, 2008, 28 (9):833-837
|
[2] |
Han W J, Feng J L, Gu Z P, et al. Polychlorinated biphenyls in the atmosphere of Taizhou, a major e-waste dismantling area in China[J]. Environmental Sciences, 2010, 22(4):589-597
|
[3] |
Sinkkonen S, Paasivirta J. Degradation half -life times of PCDDs, PCDFs and PCBs for environmental fate modeling[J]. Chemosphere, 2000, 40:943-949
|
[4] |
|
[5] |
管玉峰, 岳强, 涂秀云, 等.珠江入海口水体中多氯联苯的分布特征及其来源分析[J]. 环境科学研究, 2011, 24(8):866-872
|
[6] |
储少岗, 徐晓白, 童逸平. 多氯联苯在典型污染地区环境中的分布及其环境行为[J]. 环境科学学报, 1995, 15(4):423-434
|
[7] |
林文杰, 吴荣华, 郑泽纯, 等. 贵屿电子垃圾处理对河流底泥及土壤重金属污染[J]. 生态环境学报, 2011, 20(1):160-163
|
[8] |
罗勇, 余晓华, 杨中艺, 等. 电子废物不当处置的重金属污染及其环境风险评价Ⅰ.电子废物焚烧迹地的重金属污染[J]. 生态毒理学报, 2008, 3(01):34-41
|
[9] |
Shen C F, Huang S B, Wang Z J, et al. Identification of Ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China[J]. Environmental Sciences Technology, 42:49-55
|
[10] |
陈燕燕, 尹颖, 王晓蓉, 等. 太湖表层沉积物中PAHs和PCBs的分布与风险评价[J]. 中国环境科学, 2009, 29(2):118-124
|
[11] |
余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐形态分布特征与评价[J]. 环境科学, 2010, 31(4):961-968
|
[12] |
Meijer S N, Ockenden W A, Sweetman A, et al. Global distribution and budget of PCBs and HCB in background surface soils:Implications for global cycling[J]. Environmental Science & Technology, 2003, 37(4):667-672
|
[13] |
Long E R, Macdonald D D, Smith S L, et al. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Management, 1995, 19(1):81-97
|
[14] |
|
[15] |
顾永祚, 黄红. 离子色谱法同时测定南河底泥中水溶性无机阴离子[J]. 四川环境, 1989(1):51-57
|
[16] |
冯加良, 赵伟, 管晶晶, 等. 台州电子垃圾拆解区PM2.5中离子的组成及来源[J]. 环境化学, 2011, 30(3):693-697
|
[17] |
刘世诚, 任源, 李玲玲, 等. 河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响[J]. 环境化学, 2014, 33(6):915-922
|
[18] |
王祖伟, 吉卫星, 张辉. 土壤盐化过程中阳离子对镉的形态的分布影响[J]. 生态环境学报, 2012, 21(6):1121-2214
|
[19] |
朱崇岭. 珠三角主要电子垃圾拆解地底泥、土壤中重金属的分布及源解析[D]. 广州:华南理工大学硕士学位论文, 2014
|
[20] |
谢国樑, 卢其明, 魏小铎, 等. 咸潮对重污染底泥中重金属释放的影响[J]. 水土保持学报, 2009, 23(1):137-140
|
[21] |
童非, 顾雪元. 重金属离子与典型离子型有机污染物的络合效应研究[J]. 中国环境科学, 2014, 34(7):1776-1784
|
[22] |
聂海峰, 赵东传, 刘应汉, 等. 松花江流域河流沉积物中多氯联苯的分布来源及风险评价[J]. 环境科学, 2012, 10:49-55
|
[23] |
陈燕燕, 尹颖, 王晓蓉, 等. 太湖表层沉积物中PAHs和PCBs的分布及风险评价[J]. 中国环境科学, 2009, 29(2):118-124
|
[24] |
郭京辉, 殷月芬, 郑立, 等. 胶州湾东岸表层沉积物中多氯联苯的分布特征及风险评价[J]. 农业环境科学学报, 2011, 30(5):965-972
|
[25] |
储少岗, 杨春, 徐晓白, 等. 典型污染地区底泥和土壤中残留多氯联苯(PCBs)的情况调查[J]. 中国环境科学, 1995, 15(3):199-203
|
[26] |
|
[27] |
Mishra K, Sharma R C, Kumar S. Contamination levels and spatial distribution of organochlorine pesticides in soil from India[J]. Ecotoxicology and Environment Safety, 2012, 76:212-225
|
[28] |
Liu S D, Xia X H, Zhai Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing China:Spatial distribution and relationship with polycyclic aromatic hydrocarbons(PAHs)[J]. Chemosphere, 2009, 76(11):1498-1504
|
[29] |
MacDonald D D, Dipinto L M, Field J, et al. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls[J]. Environmental Toxicology and Chemistry, 2000, 19(5):1403-1413
|
[30] |
Kannan N, Tanabe S, Okamoto T, et al. Polychlorinated biphenyls in Hong Kong:A congener-specific approach to the study of coplanar PCBs in aquatic ecosystem[J]. Environmental Pollution, 1989, 56(2):223-225
|
[31] |
Hakanson L. An ecological risk index for aquatic pollution control A sediment to logical approach[J]. Water Research, 1980, 14(8):975-1001
|