[1] JIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the Total Environment, 2013, 458-460: 267-272.
[2] LUO Y, MAO D Q, RYSE M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
[3] 王丹, 隋倩, 赵文涛, 等. 中国地表水环境中药物和个人护理品的研究进展[J]. 科学通报, 2014, 59(9): 743-751. WANG D, SUI Q, ZHAO W T, et al. Pharmaceutical and personal care products in the surface water of China: A review[J]. Chinese Science Bulletin, 2014, 59 (9): 743-751 (in Chinese).
[4] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学:化学, 2010, 40(2): 124-135. GE L K, ZHANG S Y, XIE Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics[J]. Scientia Sinica Chimica, 2010, 40(2): 124-135 (in Chinese).
[5] HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices-A review[J]. Journal of Environmental Management, 2011, 92: 2304-2347.
[6] VERLICCHI P, AUKIDY M A, ZAMBELLO E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review[J]. Science of the Total Environment, 2012, 429: 123-155.
[7] LEUNG H W, MINH T B, MURPHY M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China[J]. Environment International, 2012, 42: 1-9.
[8] GAO L H, SHI Y L, LI W H, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China[J]. Chemosphere, 2012, 86: 655-671.
[9] 贾瑷, 胡建英, 孙建仙, 等. 环境中的医药品与个人护理品[J]. 化学进展, 2009, 21(2/3): 389 -399. JIA A, HU J Y, SUN J X, et al. Pharmaceuticals and personal care products (PPCPs) in Environment[J]. Progress in Chemistry, 2009, 21(2/3): 389-399 (in Chinese).
[10] LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224.
[11] YANG C C, HUANG C L, CHENG T C, et al. Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics[J]. International Biodeterioration & Biodegradation, 2015, 102: 116-125.
[12] MA Y P, LI M, WU M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 2015, 518-519: 498-506.
[13] 葛林科, 任红蕾, 鲁建江, 等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征[J]. 环境化学, 2015, 34(5): 875-883. GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resistance genes in the environment of China[J]. Environmental Chemistry, 2015, 34(5): 875-883 (in Chinese).
[14] 杨常青, 王龙星, 侯晓虹, 等. 大辽河水系河水中16种抗生素的污染水平分析[J]. 色谱, 2012, 30(8): 756-762. YANG C Q, WANG L X, HOU X H, et al. Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system[J]. Chinese Journal of Chromatography, 2012, 30(8): 756-762 (in Chinese).
[15] ZHANG R J, TANG J H, LI J, et al. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: Occurrence, distribution and ecological risks[J]. Environmental Pollution, 2013, 174: 71-77.
[16] NA G S, GU J, GE L K, et al. Detection of 36 antibiotics in coastal waters using high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 1093-1102.
[17] WEI R C, GE F, HUANG S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[J]. Chemosphere, 2011, 82(10): 1408-1414.
[18] NA G S, FANG X D, CAI Y Q, et al. Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China[J]. Marine Pollution Bulletin, 2013, 69(1-2): 233-237.
[19] JIANG L, HU X L, YIN D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82: 822-828.
[20] CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95: 604-612.
[21] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89: 1307-1315.
[22] ZHENG Q, ZHANG R J, WANG Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33.
[23] LUO Y, XU L, RYSE M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5): 1827-1833.
[24] XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 2007, 145: 672-679.
[25] ZOU S C, XU W H, ZHANG R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay,China: Impacts of river discharge and aquaculture activities[J]. Environmental Pollution, 2011, 159(10): 2913-2920.
[26] LIANG X M, CHEN B W, NIE X P, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China[J]. Chemosphere, 2013, 92(11): 1410-1416.
[27] ZHANG R J, ZHANG G, ZHENG Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge[J]. Ecotoxicology and Environmental Safety, 2012, 80: 208-215.
[28] LEI X N, LU J J, LIU Z L, et al. Concentration and distribution of antibiotics in water-sediment system of Bosten Lake, Xinjiang[J]. Environmental Science and Pollution Research, 2015, 22(3): 1670-1678.
[29] 葛林科, 李凯, 杨凯, 等. UV-vis光照下唑类抗菌药氟康唑的光化学反应类型[J]. 环境科学, 2013, 34(8): 3132-3136. GE L K, LI K, YANG K, et al. Photochemical reaction types of the azole fungicide fluconazole under UV-vis irradiation[J]. Environmental Science, 2013, 34(8): 3132-3136 (in Chinese).
[30] CHALLIS J K, CARLSON J C, FRIESEN K J, et al. Aquatic photochemistry of the sulfonamide antibiotic sulfapyridine[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262: 14-21.
[31] GALAN M J G, CRUZ M S D, BARCELO D. Kinetic studies and characterization of photolytic products of sulfamethazine, sulfapyridine and their acetylated metabolites in water under simulated solar irradiation[J]. Water Research, 2012, 46: 711-722.
[32] LIAN J F, QIANG Z M, LI M K. UV photolysis kinetics of sulfonamides in aqueous solution based on optimized fluence quantification[J]. Water Research, 2015, 75: 43-50.
[33] LI Y J, WEI X X, CHEN J W. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy[J]. Journal of Hazardous Materials, 2015, 290: 9-15.
[34] BOREEN A L, ARNOLD X A, MCNEILL K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J]. Environmental Science & Technology, 2004, 38(14): 3933-3940.
[35] BOREEN A L, ARNOLD W A, MCNEILL K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2 extrusion photoproduct[J]. Environmental Science & Technology, 2005, 39(10): 3630-3638.
[36] 陈景文, 全燮. 环境化学[M]. 大连: 大连理工大学出版社, 2009: 103-116. CHEN J W, QUAN X. Environmental Chemistry[M]. Dalian: Dalian University of Technology Press, 2009: 103 -116 (in Chinese).
[37] BONVIN F, OMLIN J, RUTLER R, et al. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation[J]. Environmental Science & Technology, 2013, 47(13): 6746-6755.
[38] NIU J, ZHANG L, LI Y, et al. Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism[J]. Journal of Environmental Sciences, 2013, 25(6): 1098-1106.
[39] XU J, HAO Z, GUO C, et al. Photodegradation of sulfapyridine under simulated sunlight irradiation: Kinetics, mechanism and toxicity evolvement[J]. Chemosphere, 2014, 99: 186-191.
[40] TORNIAINEN K, TAMMILEHTO S, ULVI V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin[J]. International Journal of Pharmaceutics, 1996, 132(1-2): 53-61.
[41] WEI X X, CHEN J W, XIE Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environmental Science & Technology, 2013, 47(9): 4284-4290.
[42] GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents[J]. Environmental Science & Technology, 2010, 44(7): 2400-2405.
[43] 葛林科, 陈景文, 张思玉, 等. 水中氟喹诺酮类抗生素加替沙星的光降解[J]. 科学通报, 2010, 55(11): 996-1001. GE L K, CHEN J W, ZHANG S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions[J]. Chinese Science Bulletin, 2010, 55(11): 996-1001 (in Chinese).
[44] WERNER J J, ARNOLD W A, MCNEILL K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006, 40(23): 7236-7241.
[45] NIU J F, LI Y, WANG W L. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: Kinetics and mechanism[J]. Chemosphere, 2013, 92(11): 1423-1429.
[46] LI Y, NIU J F, SHANG E X, et al. Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase[J]. Environmental Science & Technology, 2015, 49(2): 965-973.
[47] LI K, ZHANG P, GE L K, et al. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics[J]. Chemosphere, 2014, 111: 278-282.
[48] LIU H, ZHAO H, QUAN X, et al. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation[J]. Environmental Science & Technology, 2009, 43(20): 7712-7717.
[49] ZHANG R, SUN P, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2 and UV/PDS[J]. Environmental Science & Technology, 2015, 49(5): 3056-3066.
[50] MILL T. Predicting photoreaction rates in surface waters[J]. Chemosphere, 1999, 38(6): 1379-1390.
[51] COOPER W J, ZIKA R G, PETASNE R G, et al. Sunlight-induced photochemistry of humic substances in natural waters: Major reactive species[J]. Advances in Chemistry, 2009, 219(1): 333-362.
[52] PAUL T, MACHESKY M L, STRATHMANN T J. Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces[J]. Environmental Science & Technology, 2012, 46(21): 11896-11904.
[53] NEAFSEY K, ZENG X, LEMLEY A T. Degradation of sulfonamides in aqueous solution by membrane anodic Fenton treatment[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1068-1076.
[54] ZHANG J. Degradation mechanism of sulfa drugs based on theoretical prediction and experimental examination in TiO2 suspension[J]. Research on Chemical Intermediates, 2014, 40(3): 1089-1102.
[55] CHEN Y, LI H, WANG Z, et al. Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: Effects of Ca2+ and Mg2+[J]. Journal of Environmental Sciences, 2011, 23(10): 1634-1639.
[56] BAEZA C, KNAPPE D R U. Transformation kinetics of biochemically active compounds in low-pressure UV Photolysis and UV/H2O2 advanced oxidation processes[J]. Water Research, 2011, 45: 4531-4543.
[57] SAGI G, CSAY T, SZABO L, et al. Analytical approaches to the OH radical induced degradation ofsulfonamide antibiotics in dilute aqueous solutions[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106: 52-60.
[58] GE L K, NA G S, ZHANG S Y, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes[J]. Science of the Total Environment, 2015, 527-528: 12-17.
[59] 孙兴霞, 许毓. 水中磺胺类抗生素的光降解及富里酸对其光降解的影响[J]. 中国科学技术大学学报, 2013, 43(8): 654-660. SUN X X, XU Y. Photodegradation of sulfa antibiotics and the impact of fulvic acids on it in water[J]. Journal of University of Science and Technology of China, 2013, 43(8): 654-660 (in Chinese).
[60] 黄春年, 李学德, 花日茂. 磺胺二甲嘧啶在水溶液中的光化学降解[J]. 环境污染与防治, 2011, 33(12): 59-64. HUANG C N, LI X D, HUA R M. Photochemical degradation of sulfamethazine in aqueous solution[J]. Environmental Pollution and Control, 2011, 33(12): 59-64 (in Chinese).
[61] 马艳, 高乃云, 张东. UV-C辐照降解水中磺胺类药物[J]. 净水技术, 2014, 33(3): 75-78. MA Y, GAO N Y, ZHANG D. Degradation of Sulfonamides by UV-C Irradiation in Water Treatment[J]. Water Purification Technology, 2014, 33(3): 75-78 (in Chinese).
[62] XU J, HAO Z N, GUO C S, et al. Photodegradation of sulfapyridine under simulated sunlight irradiation:Kinetics, mechanism and toxicity evolvement[J]. Chemosphere, 2014, 99: 186-191.
[63] QIANG Z, ADAMS C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12): 2874-2890.
[64] GUERARD J J, CHIN Y P, MASH H, et al. Photochemical fate of sulfadimethoxine in aquaculture waters[J]. Environmental Science & Technology, 2009, 43(22): 8587-8592.
[65] WENK J, VON GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical [J]. Environmental Science & Technology, 2011, 45(4): 1334-1340.
[66] 赵家兴, 陈景文, 张思玉, 等. Mg2+配位作用对磺胺嘧啶结构及吸收光谱影响的计算模拟及验证[J]. 环境化学, 2011, 30(12): 1975-1982. ZHAO J X, CHEN J W, ZHANG S Y, et al. Computational simulation and validation of Mg2+ complexation effects on the structure and absorption spectra of sulfadiazine[J]. Environmental Chemistry, 2011, 30(12): 1975-1982 (in Chinese).
[67] ZHOU D N, HUANG W Y, WU F, et al. Photodegradation of chloromycetin in aqueous solutions: kinetics and influencing factors[J]. Reaction Kinetics Mechanisms and Catalysis, 2010, 100(1): 45-53.
[68] BEATE F, ANDREAS V, FELIX M, et al. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study[J]. Environmental Science & Technology, 2013, 47(19): 10903-10911.
[69] 李英杰, 尉小旋, 乔显亮, 等. 溶解性有机质及Cu(II)配位对磺胺二甲基嘧啶光转化的影响[J]. 科学通报, 2015, 60(30): 2900-2906. LI Y J, WEI X X, QIAO X L, et al. Effects of dissolved organic matter and coordination with Cu(II) on the phototransformation of sulfamethazine in aqueous solutions[J]. Chinese Science Bulletin, 2015, 60(30): 2900-2906 (in Chinese).
[70] 路莹, 鲁楠, 赵雅辉, 等. 磺胺甲唑在磷钨酸/二氧化钛复合膜上的光催化降解[J]. 环境化学, 2014, 33(4): 649-655. LU Y, LU N, ZHAO Y H, et al. Photocatalytic degradation sulfamethoxazole of using H3PW12O40/TiO2 composite film[J]. Environmental Chemistry, 2014, 33(4): 649-655 (in Chinese).
[71] BATISTA A P S, PIRES F C C, TEIXEIRA A C S C. The role of reactive oxygen species in sulfamethazine degradationusing UV-based technologies and products identification[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 290: 77-85.
[72] POMELLI C S, CHIAPPE C, LAPI A. Accelerating effect of imidazolium ionic liquids on the singlet oxygen promoted oxidation of thioethers: A theoretical study[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 240(15): 59-65.
[73] CZAPLICKA M. Photo-degradation of chlorophenols in the aqueous solution[J]. Journal of Hazardous Materials, 2006, 134(1-3): 45-59.
[74] BATISTA A P S, PIRES F C C, TEIXEIRA A C S C. Photochemical degradation of sulfadiazine, sulfamerazine andsulfamethazine: Relevance of concentration and heterocyclicaromatic groups to degradation kinetics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286: 40-46.
[75] 焦晓微, 赵丹, 罗一, 等. 磺胺甲唑在羟基自由基作用下降解机理的密度泛函研究[J]. 安全与环境学报, 2013, 13(2): 40-45. JIAO X W, ZHAO D, LUO Y, et al. Density functional studies of the reaction mechanism of sulfamethoxazole with hydroxyl radical[J]. Journal of Safety and Environment, 2013, 13(2): 40-45 (in Chinese).
[76] CALZA P, MEDANA C, PAZZI M, et al. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B Environmental, 2004, 53(1): 63-69.
[77] 梁凤颜, 尹平河, 赵玲, 等. 水体中微污染磺胺嘧啶光催化降解行为[J]. 生态环境学报, 2009, 18(4): 1227-1230. LIANG F Y, YIN P H, ZHAO L, et al. Photocatalytic degradation of trace sulfadiazine in water[J]. Ecology and Environmental Sciences, 2009, 18(4): 1227-1230 (in Chinese).
[78] ABELLÁN M N, BAYARRI B, GIMENEZ J, et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2[J]. Applied Catalysis B: Environmental, 2007, 74: 233-241.
[79] XU L, WANG G, MA F, et al. Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites[J]. Applied Surface Science, 2012, 258: 7039-7046.
[80] DLUGOSZ M, ZMUDZKI P, KWIECIEN A, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst[J]. Journal of Hazardous Materials, 2015, 298: 146-153.
[81] JUNG J, KIM Y, KIM J, et al. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna[J]. Ecotoxicology, 2008, 17(1): 37-45.
[82] TROVÓ A G, NOGUEIRA R F P, AGUERA A, et al. Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment[J]. Chemosphere, 2009, 77(10): 1292-1298.
[83] ZESSEL K, MOHRING S, HAMSCHER G, et al. Biocompatibility and antibacterial activity of photolytic products of sulfonamides[J]. Chemosphere, 2014, 100: 167-174.
[84] CHIRON S, MINERO C, VIONE D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006, 40(19): 5977-5983.
[85] SANKODA K, KURIBAYASHI T, NOMIYAMA K, et al. Occurrence and source of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in Tidal Flats of the Ariake Bay, Japan[J]. Environmental Science & Technology, 2013, 47(13): 7037-7044.
[86] 胡学锋, 吴蕾, 骆永明. 苯胺在含富里酸/Fe(Ⅲ)高盐水体中的光氯化[J]. 环境化学, 2014, 33(4): 611-616. HU X F, WU L, LUO Y M. Photochlorination of aniline in Fe(Ⅲ)/fulvic acid-containing saline water under simulated light irradiation[J]. Environmental Chemistry, 2014, 33(4): 611-616 (in Chinese).
[87] DODD M C, SHAH A D, VON GUNTEN U, et al. Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: Reaction kinetics, mechanisms, and transformation pathways[J]. Environmental Science & Technology, 2005, 39(18): 7065-7076.
[88] EDHLUND B L, ARNOLD W A, MCNEILL K. Aquatic photochemistry of nitrofuran antibiotics[J]. Environmental Science & Technology, 2006, 40(17): 5422-5427.
[89] 任红蕾, 张蓬, 李凯, 等. 水中氟喹诺酮类抗生素光降解过程中抑菌活性的变化[J]. 环境化学, 2014, 33(5): 753-759. REN H L, ZHANG P, LI K, et al. Changes in antibacterial activity of fluoroquinolone antibiotics due to photodegradation[J]. Environmental Chemistry, 2014, 33(5): 753-759 (in Chinese).
[90] PAUL T, DODD M C, STRATHMANN T J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity[J]. Water Research, 2010, 44(10): 3121-3132.
[91] STURINI M, SPELTINI A, MARASCHI F, et al. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts[J]. Water Research, 2012, 46(17): 5575-5582.