[1] 杨静,崔世海,陈慧慧,等. 磁载纳米TiO2复合材料光催化材料的研究进展[J]. 环境化学,2014,33(11): 1930-1935. YANG J,CUI S H,CHEN H H,et al. Research progress on magnetic TiO2 composite nano-photocatalysts[J]. Environmental Chemistry,2014,33(11): 1930-1935(in Chinese).
[2] WANG Q Y,QIAO J L,JIN R C,et al. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties[J]. Journal of Power Sources,2015,277: 480-485.
[3] TACHIKAWA T,FUJITSUKA M,MAJIMA T. Mechanistic insight into the TiO2 Photocatalytic Reactions: Design of new photocatalysts[J]. Journal of Physical Chemistry C,2007,111(14): 5259-5275.
[4] ASAHI R,MORIKAWA T,OHWAKI T,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528): 269-271.
[5] 李琪,韩立娟,刘刚,等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学,2013,32(6): 1073-1080. LI Q,HAN L J,LIU G,et al. Synthesis,characterization and degradation performance of V-N-doped TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry,2013,32(6): 1073-1080(in Chinese).
[6] KAMEGAWA T,YAMAHANA D,YAMASHITA H. Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic Activity[J]. Journal of Physical Chemistry C,2010,114(35): 15049-15053.
[7] WANG X T,LI Y M,LIU X,et al. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chinese Journal of Catalysis,2015,36(3): 389-399.
[8] LIU X,GAO S M,XU H,et al. Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity[J]. Nanoscale,2013,5(5): 1870-1875.
[9] WAN Z,HUANG G F,HUANG W Q,et al. The enhanced photocatalytic activity of Ti3+ self-doped TiO2 by a reduction method[J]. Materials Letters,2014,122(5): 33-36.
[10] DAI K,LU L H,LIANG C H,et al. Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation[J]. Applied Catalysis B: Environmental,2014,156-157: 331-340.
[11] WANG X C,BLECHERT S,ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis,2012,2(8): 1596-1606.
[12] ZHANG J S,CHEN X F,TAKANABE K,et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie International Edition,2010,49(2): 441-444.
[13] YAN H J,YANG J H,MA G J,et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis,2009,266(2): 165-168.
[14] LI X,XIA J X,XU H,et al. Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance[J]. Journal of Power Sources,2014,245: 866-874.
[15] YU J G,WANG S H,LOW J X,et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics,2013,15(39): 16883-16890.
[16] WANG J,ZHANG W D. Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity[J]. Electrochimica Acta,2012,71(3): 10-16.
[17] LI K,GAO S M,Wang Q Y,et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Material & Interfaces,2015,7(17): 9023-9030.
[18] HE Y M,ZHANG L H,FAN M H,et al. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction[J]. Solar Energy Materials & Solar Cells,2015,137: 175-184.