[1] WEI Y M, LI Y, GUO B L. Study on the trace of contamination for vegetal food[M]. Beijing:Science Press, 2010.
[2] [3] SIMEONOV V, EINAX J, TSAKOVSKI S, et al. Multivariate statistical assessment of polluted soils[J]. Central European Science Journals, 2005, 3(1):1-9.
[3] [4] ZHOU J, MA D S, PAN J Y, et al. Application of multivariate statistical approach to identify heavy metal sources in sediment and waters:A case study in Yangzhong, China[J]. Environmental Geology, 2008, 54(2):373-380.
[4] [5] YALCIN M G, ILHAN S. Multivariate analyses to determine the origin of potentially harmful heavy metals from Kizkalesi coast(Mersin),Turkey Bull[J].Environment Contamination and Toxicology, 2008, 81(1):57-68.
[5] [6] ALKARKHI A, AHMAD A, ISMAIL N. Multivariate analysis of heavy metals concentrations in river estuary[J]. Environmental Monitoring and Assessment, 2008,143(1-3):179-186.
[6] [8] IMPERATOM, ADAMO P, NAIMO D, et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy)[J]. Environmental Pollution, 2003, 124(2):247-256.
[7] [9] LEE C S L, LI X D, SHI W Z. Metal contamination in urban, suburban, and country par k soils of Hong Kong:A study based on GIS and multivariate statistics[J]. Science of the Total Environment, 2006, 356(1-3):45-61.
[8] [11] CHEN J B, GAILLARDET J, LOUVAT P, et al. Zn isotopes in the suspended load of the Seine River, France:Isotopic variations and source determination[J]. Geochimica et Cosmochimica Acta, 2009, 73(14):4060-4076.
[9] [12] SONKE J E, SCHAFER J, CHMELEFF J, et al. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries[J]. Chemical Geology, 2010, 279(3):90-100.
[10] [14] HAN L F, GAO B, WEI X, et al. The characteristic of Pb isotopic compositions in different chemical fractions in sediments from Three Gorges Reservoir, China[J]. Environmental Pollution, 2015, 206:627-635.
[11] [16] OGURA I, GAMO M, MASUNAGA S, et al. Quantitative identification of sources of dioxin-like polychlorinated biphenyls in sediments by a factor analysis model and a chemical mass balance model combined with Monte Carlo techniques[J]. Environmental Toxicology and Chemistry, 2005, 24(2):277-285.
[12] [19] BOLLHOFER A, ROSMAN K J R. Isotopic source signatures for atmospheric lead:The Northern Hemisphere[J]. Geochimica et Cosmochimica Acta, 2001, 65(11):1727-1740.
[13] [20] YOO E J, LEE J A, PARK J S, et al. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios[J]. Environmental Monitoring & Assessment, 2014, 186(2):781-789.
[14] [21] WEISS D J, KOBER B, DOLGOPOLOVA A, et al. Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2004, 232(3):205-215.
[15] [22] ZURBRICK C M, GALLON C, FLEGAL A R. A new method for stable lead isotope extraction from seawater[J]. Analytica Chimica Acta, 2013, 800(800C):29-35.
[16] [23] ODIGIE K O, COHEN A S, SWARZENSKI P W, et al. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed-Lake exchange[J]. Applied Geochemistry, 2014, 51:184-190.
[17] [24] LEGALLEY E, WIDOM E, KREKELER M P S, et al. Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in southwest Ohio[J]. Applied Geochemistry, 2013, 32(32):195-203.
[18] [25] GREZZI G, AYUSO R A, VIVO B D, et al. Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment:The Domizio-Flegreo Littoral (Italy) case study[J]. Fuel & Energy Abstracts, 2011, 109(1):51-58.
[19] [26] KRISTENSEN L J, TAAYLOR M P, ODIGIE K O, et al. Lead isotopic compositions of ash sourced from Australian bushfires[J]. Environmental Pollution, 2014, 190(7):159-165.
[20] [27] STURGES W T, BARRIE L A. Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions[J]. Nature, 1987, 329(6135):144-146.
[21] [28] HITOSHI M, ATSUSHI T, TOSHIHLRO F. Regional characteristic of sulfur and lead at several Chinese urban sites[J]. Environmental Science & Technology, 2001, 35:1064-1071.
[22] [29] MONNA F, OTHMAN D B, LUCK J M. Lead isotopes and Pb, Zn and Cd concentrations in the rivers feeding a coastal pond (Thau, southern France):Constraints on the origin(s) and flux(es) of metals[J]. Science of the Total Environment, 1995, 166(166):19-34.
[23] [30] MONNA F, HAMER K, LEVEQUE J, et al. Pb isotopes as a reliable marker of early mining and smelting in the Northern Harzpr ovince (Lower Saxony, Germany)[J]. Journal of Geochemical Exploration, 2000, 68(3):201-210.
[24] [31] KOMAREK M, ETTLER V, CHRASTNY V, et al. Lead isotopes in environmental sciences:A review[J]. Environment International, 2008, 34(4):562-577.
[25] [32] ZHANG W G, FENG H, CHANG J N, et al. Lead (Pb) isotopes as a tracer of Pb origin in Yangtze River intertidal zone[J]. Chemical Geology, 2008, 257(3-4):257-263.
[26] [33] TAN M G, ZHANG G L, LI X L, et al. Comprehensive study of lead pollution in Shanghai by multiple techniques[J]. Analytical Chemistry, 2006, 78(23):8044-8050.
[27] [34] CHEN J M, TAN M G, LI Y L, et al. A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline[J]. Atmospheric Environment, 2005, 39(7):1245-1253.
[28] [35] CHEN J M, TAN M G, LI Y L, et al. Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai[J]. Journal of Hazardous Materials, 2008, 156(1-3):36-43.
[29] [37] CHOI M S, YI H I, YANG S Y, et al. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios[J]. Marine Chemistry, 2007, 107(2):255-274.
[30] [39] JIANG B F, SUN W L. Assessment of heavy metal pollution in sediments from Xiangjiang River (China) using sequential extraction and lead isotope analysis[J]. Journal of Central South University, 2014, 21(6):2349-2358.
[31] [40] PRIBIL M J, GRAY J E, METRE P C V, et al. Tracing anthropogenic contamination in a lake sediment core using Hg, Pb, and Zn isotopic compositions[C]. Geological Society of America, 2010.
[32] [41] THAPALIA A, BORROK D M, VAN METRE P C, et al. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake[J]. Environmental Science &Technology, 2010, 44(5):1544-1550.
[33] [42] THAPALIA A, BORROK D M, VAN METRE P C, et al. Zinc isotopic signatures in eight lake sediment cores from across the United States[J]. Environmental Science & Technology, 2015, 49(1):132-140.
[34] [43] CHEN J B, GAILLARDET J, LOUVAT P. Zinc isotope in the Seine River waters, France:A probe of anthropogenic contamination[J]. Environment Science & Technology, 2008, 42(17):6494-6501.
[35] [44] FEKIACOVA Z, CORNU S, PICHAT S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of the Total Environment, 2015, 517C:96-105.
[36] [45] TU Y J, YOU C F, KUO T Y, et al. Zinc isotopic composition in industrial wastewaters and its application as a pollution indicator in Erjen River[C]. Isotope Research in Ecogeochemistry International Symposium. Vienna, Austria, 2012.
[37] [46] RESONGLES E, CASIOT C, FREYDIER R, et al. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France[J]. Science of the Total Environment, 2014, 481(1):509-521.
[38] [47] ALBAREDE F, TELOUK P, BLICHERT-TOFT J. et al. Precise and accurate isotopic measurements using multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2004, 68(12):2725-2744.
[39] [48] ROSMAN K J R. A survey of the isotopic and elemental abundances of zinc[J]. Geochimica et Cosmochimica Acta, 1972, 36(7):801-819.
[40] [49] LUCK J M, BEN O D, ALBAREDE F, et al. Pb, Zn and Cu isotopic variations and trace elements in rain.[C].In Armannsson H (ed) Geochemistry of the Earth's surface. Balkema, Rotterdam 1999:199-202.
[41] [50] MATTIELLI N, YAO M, GUESSAN N, et al. Isotopic study of two biolimiting metals (Zn and Cu) in industrial aerosols[J]. Geophysical Research Abstracts, 2005, 7:10030.
[42] [51] CHAPMAN J B, MASON T F D, WEISS D J, et al. Chemical separation and isotopic variations of Cu and Zn from five geological reference materials[J]. Geostandards Geoanalytical Research, 2010,30(1):5-16.
[43] [52] CLOQUET C, CARIGNAN J, LEHMANN M F, et al. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences:A review[J]. Analytical Bioanalytical Chemistry, 2008, 390(2):451-463.
[44] [53] JOHN S G, PARK J G, ZHANG Z, et al. The isotopic composition of some common forms of anthropogenic zinc[J]. Chemical Geology, 2007, 245(1-2):61-69.
[45] [54] VIERS J, OLIVA P, NONELL A, et al. Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi,Cameroon)[J]. Chemical Geology, 2007, 239(1-2):124-137.
[46] [55] BIGALKE M, WEYER S, KOBZA J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica et Cosmochimica Acta, 2010, 74(23):6801-6813.
[47] [56] YIN N H, SIVRY Y, BENDEDTTI M F, et al. Application of Zn isotopes in environmental impact assessment of Zn-Pb metallurgical industries:A mini review[J]. Applied Geochemistry, 2016, 64(4):128-135.
[48] [57] MARÉCHAL C N, TELOUK P, ALBAREDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4):251-273.
[49] [58] SOSSI P A, HALVERSON G P, NEBEL O, et al. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards & Geoanalytical Research, 2014, 39(2):129-149.
[50] [60] BORROK D M, WANTY R B, RIDLEY W I, et al. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology, 2007, 242(3-4):400-414.
[51] [61] MATHUR R, RUIZ J, TITLEY S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(22):5233-5246.
[52] [62] MATHUR R, TITLEY S, BARRA F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical Exploration, 2009, 102(1):1-6.
[53] [63] ZHU Z Y, JIANG S Y, YANG T, et al. Improvements in Cu-Zn isotope analysis with MC-ICP-MS:A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect[J]. International Journal of Mass Spectrometry, 2015, 393:34-40.
[54] [64] WEISS D J, MASON T F D, ZHAN F J, et al. Isotopic discrimination of Zinc in higher plants[J].New Phytologist, 2005, 165(3):703-710.
[55] [65] PICHAT S, DOUCHET C, ALBAREDE F. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka[J]. Earth and Planetary Science Letters, 2003, 210(1-2):167-178.
[56] [66] MATTHIES R, SINCLAIR S A, BLOWES D W. The Zinc stable isotope signature of waste rock drainage in the Canadian perma-frost region[J]. Applied Geochemistry, 2014, 48:53-57.
[57] [67] ZHAO Y, VANCE D, ABOUCHAMI W, et al. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean[J]. Geochimica et Cosmochimica Acta, 2014, 125(2):653-672.
[58] [68] SHIEL A E, WEIS D, ORIANS K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11):2357-2368.