[1] |
XIAO T, GUHA J, BOYLE D, et al. Naturally occurring thallium:A hidden geoenvironmental health hazard?[J]. Environ Int, 2004,30:501-507
|
[2] |
JOHN PETER A L, VIRARAGHAVAN T. Thallium:A review of public health and environmental concerns[J]. Environment International, 2005, 31:493-501.
|
[3] |
YANG C X, CHEN Y H, PENG P A, et al. Distribution of natural and anthropogenic thallium in highly weathered soils[J]. The Science of Total Environment, 2005, 341:159-172.
|
[4] |
Twidwell L G, Williams-Beam C. Potential technologies for removing thallium from mine and process wastewater:An annotation of the literature[J]. Euro-Miner Process Environ Prot 2002,2:1-10.
|
[5] |
刘敬勇,常向阳,涂湘林.重金属铊污染及防治对策研究进展[J]. 土壤,2007,39(4):528-535.
LIU J Y, CHANG X Y, TU X L. Thallium pollution and its countermeasures[J]. Soils,2007,39(4):528-535(in Chinese).
|
[6] |
ZHANG L, HUANG T, ZHANG M, et al. Studies on the capability and behavior of adsorption of thallium on nano-Al2O3[J]. Journal of Hazardous Materials, 2008, 157:352-357.
|
[7] |
孙嘉龙,肖唐付,周连碧,等.铊矿山废水的微生物絮凝处理研究[J]. 地球与环境, 2010,38(3):383-385.
SUN J L, XIAO T F, ZHOU L B, et al. Bioflocculant treatment of mine water from tl mineralized area[J]. Earth and Environment, 2010,38(3):383-385(in Chinese).
|
[8] |
QIN Z, CHEN Y, MING Y, et al. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support[J]. Bioresource Technology, 2013, 136(5):413-417.
|
[9] |
陈炜婷,张鸿郭,陈永亨,等. pH、温度及初始铊浓度对硫酸盐还原菌脱铊的影响[J].环境工程学报,2014,8(10):4105-4109.
CHEN W T, ZHANG H G, CHEN Y H, et al. Effect of pH, temperature and initial concentration on thallium removal by sulfate-reducing bacteria[J]. Chinese Journal of Environmental Engineering,2014,8(10):4105-4109(in Chinese).
|
[10] |
WANNARAK N, PARICHAT N, ONRUTHAL P. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402[J].Biodegradation, 2013,24(3):386-397.
|
[11] |
俞毓馨,吴国庆,孟宪庭,等.环境工程微生物检验手册[M].北京:中国环境科学出版社,1990:163-165. YU Y X, WU G Q, MENG X T, et al. Environmental engineering microbiology examination handbook[M]. Beijing:China Environmental Science Press, 1990:163
-165(in Chinese).
|
[12] |
MANSOUR M, OSSMAN M, FARAG H. Removal of Cd (Ⅱ) ion from waste water by adsorption onto polyaniline coated on sawdust[J]. Desalination,2011,272(1):301-305.
|
[13] |
PARK Y J, KO J J, YUN S L, et al. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn[J]. Bioresource Technology,2008,99(16):7458-7463.
|
[14] |
XU X Q, LI X M, YANG L, et al.Biosorption of lead and copper ions by penicillium simplicissimum immobilized on a loofa sponge immobilized biomass[J].Acta Scientiae Circumstantia, 2008,28(1):95-100.
|
[15] |
CAO J Y, ZHANG G J, MAO Z S, et al. Influence of Mg2+ on the growth and activity of sulfate reducing bacteria[J]. Hydrometallurgy, 2009, 95(1-2):127-134.
|
[16] |
ZAGURY G J, KULNIEKS V I, NECULITA C M. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid-mine drainage treatment[J]. Chemosphere,2006, 64(6):944-954.
|
[17] |
MIN X B, CHAI L Y, ZHANG C F, et al. Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria[J].Chemosphere,2008,72(7):1086-1091.
|
[18] |
FANG D, ZHANG R, LIU X, et al. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide[J]. Journal of Hazardous Materials, 2012, 219-220(12):119-126.
|
[19] |
CHEN J H,NI J C, LIU Q L, et al. Adsorption behavior of Cd(Ⅱ) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorption[J]. Desalination,2012,285(31):54-61.
|