[1] |
TSENG T K, CHU H, HSU H H. Characterization of γ-alumina-supported manganese oxide as an incineration catalyst for trichloroethylene[J]. Environmental Science & Technology, 2003, 37(1):171-176.
|
[2] |
YAN T, TIAN J, GUAN W, et al. Ultra-low loading of Ag3PO4on hierarchical In2S3 microspheres to improve the photocatalytic performance:The cocatalytic effect of Ag and Ag3PO4[J]. Applied Catalysis B:Environmental, 2017, 202:84-94.
|
[3] |
齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2/MoS2复合光催化剂及其光催化制氢活性[J]. 环境化学, 2016, 35(5):1027-1034.
QI Z, WANG X, LI L S, et al. Development of TiO2/MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light[J]. Environmental Chemistry, 2016, 35(5):1027-1034(in Chinese).
|
[4] |
李凯, 魏停, 高政纲, 等. Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能[J]. 环境化学, 2016, 35(5):1020-1026.
LI K, WEI T, GAO Z G, et al. Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites[J]. Environmental Chemistry, 2016, 35(5):1020-1026(in Chinese).
|
[5] |
程禄, 孙静, 申婷婷, 等. FeVO4/BiVO4光-Fenton复合催化剂的制备与催化性能[J]. 环境化学, 2016, 35(10):2156-2161.
CHENG L, SUN J, SHEN T T, et al. Preparation of FeVO4/BiVO4 and its catalytic property in a photo-Fenton-like process for the degradation of methylene blue[J]. Environmental Chemistry, 2016, 35(10):2156-2161(in Chinese).
|
[6] |
WANG W, YOU S, GONG X, et al. Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells[J]. Advanced Materials, 2016, 28(2):270-275.
|
[7] |
YAN W, HERZING A A, LI X, et al. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity[J]. Environmental Science & Technology, 2010, 44(11):4288-4294.
|
[8] |
杜翠翠,王秋麟,陆胜勇,等.V2O5/TiO2基催化剂催化转化1,2-二氯苯[J].环境化学,2017,36(1):141-146.
DU C C, WANG Q L, LU S Y, et al. Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts[J]. Environmental Chemistry, 2017, 36(1):141-146(in Chinese).
|
[9] |
GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis, 2004, 36(12):1564-1574.
|
[10] |
MA J, YANG Q, WEN Y, et al. Fe-g C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B:Environmental, 2017, 201:232-240.
|
[11] |
张中杰, 关卫省, 孙绍芳, 等. Pt/BiVO4光催化剂的制备及其光催化降解性能[J]. 环境化学, 2014,33(6):1003-1009.
ZHANG Z J, GUANG W S, SUN S F, et al. Preparation of Pt/BiVO4 and its photocatalytic activity for the degradation of tetracycline[J]. Environmental Chemistry, 2014,33(6):1003-1009(in Chinese).
|
[12] |
MA H, ZHUO Q, WANG B. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions[J]. Environmental Science & Technology, 2007, 41(21):7491-7496.
|
[13] |
ZHANG Y, LIU C, XU B, et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:Combination of adsorption and catalysis oxidation[J]. Applied Catalysis B:Environmental, 2016, 199:447-457.
|
[14] |
CHOI W J, CHUNG Y J, PARK S, et al. A simple method for cleaning graphene surfaces with an electrostatic force[J]. Advanced Materials, 2014, 26(4):637-644.
|
[15] |
LANCEE R J, DUGULAN A I, THVNE P C, et al. Chemical looping capabilities of olivine, used as a catalyst in indirect biomass gasification[J]. Applied Catalysis B:Environmental, 2014, 145:216-222.
|
[16] |
KOBE B A, RAMAMURTHY S, BIESINGER M C, et al. XPS imaging investigations of pitting corrosion mechanisms in Inconel 600[J]. Surface and Interface Analysis, 2005, 37(5):478-494.
|
[17] |
LEI M, WANG N, ZHU L H, et al. Peculiar and rapid photocatalytic degradation of tetrabromodiphenyl ethers over Ag/TiO2 induced by interaction between silver nanoparticles and bromine atoms in the target[J]. Chemosphere, 2016, 150:536-544.
|
[18] |
WANG X B, QIN Y L, ZHU L H, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols:Synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11):6855-6864.
|
[19] |
LUO W, ZHU L H, WANG N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst[J]. Environmental Science & Technology, 2010, 44(5):1786-1791.
|
[20] |
ZHAO X R, ZHU L H, Zhang Y Y, et al. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst[J]. Journal of Hazardous Materials, 2012, 215:57-64.
|
[21] |
陈满堂, 宋洲, 王楠, 等. 铋银氧化物混合物高效氧化降解四溴双酚A的研究[J]. 环境科学, 2015,36(1):209-214.
CHEN M T, SONG Z, WANG N, et al. Efficient oxidative degradation of tetrabromobisphenol A by silver bismuth oxide. Environmental Science, 2015,36(1):209-214(in Chinese).
|
[22] |
LEI M, WANG N, ZHU L H, et al. A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst[J]. Chemical Engineering Journal, 2014, 241:207-215.
|
[23] |
DING Y B, ZHU L H, HUANG A Z, et al. A heterogeneous Co3O4-Bi2O3 composite catalyst for oxidative degradation of organic pollutants in the presence of peroxymonosulfate[J]. Catalysis Science & Technology, 2012, 2(9):1977-1984.
|
[24] |
UDAWATTA C P K, BANDARA J, RAJAPAKSE C S K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O[J]. Photochemical & Photobiological Sciences, 2005, 4(11):857-861.
|
[25] |
JIN Z, ZHANG X, LI Y, et al. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation[J]. Catalysis Communications, 2007, 8(8):1267-1273.
|
[26] |
KUM J, YOO S, ALI G, et al. Photocatalytic hydrogen production over CuO and TiO2 nanoparticles mixture[J]. International Journal of Hydrogen Energy, 2013, 38:13541-13546.
|
[27] |
LEI M, WANG N, ZHU L H, et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites:A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper[J]. Applied Catalysis B:Environmental, 2016, 182:414-423.
|
[28] |
ZHANG W J, LI Y, ZHU S L, et al. Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering[J]. Catalysis Today, 2004, 93:589-594.
|
[29] |
FENG H B, LI Y P, LUO D M, et al. Novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure:Preparation and photocatalytic characteristics[J]. Chinese Journal of Catalysis, 2016, 37(6):855-862.
|
[30] |
DEVARAJ M, SARAVANAN R, DEIVASIGAMANI R K, et al. Preparation of novel shape Cu and Cu/Cu2O nanoparticles for the determination of dopamine and paracetamol[J]. Journal of Molecular Liquids, 2016, 221:930-941.
|
[31] |
PLATZMAN I, BRENER R, HAICK H, et al. Oxidation of polycrystalline copper thin films at ambient conditions[J]. The Journal of Physical Chemistry C, 2008, 112(4):1101-1108.
|
[32] |
SINATRA L, LAGROW A P, PENG W, et al. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?[J]. Journal of Catalysis, 2015, 322:109-117.
|
[33] |
DING Y B, ZHU L H, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2013, 129:153-162.
|
[34] |
DING Y B, TANG H Q, ZHANG S H, et al. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 2016, 317:686-694.
|
[35] |
LIU J M, HAN L, AN N, et al. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage[J]. Applied Catalysis B:Environmental, 2017, 202:642-652.
|
[36] |
CHENG X W, CHENG Q F, DENG X Y, et al. A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac[J]. Chemosphere, 2016, 144:888-894.
|