[1] JEONG H, ANATHARAMAN K, HAN Y, et al. Abiotic reductive dechlorination of cis-dichloroethylen by Fe species formed during iron or sulfate reduction[J]. Environmental Science & Technology, 2011, 45(12):5186-5194.
[2] LIANG X, BUTLER E. Effects of natural organic matter model compounds on the transformation of carbon tetrachloride by chloride green rust[J]. Water Research, 2010, 44(7):2125-2132.
[3] KLAUSEN J, TROBER S, HADERLEIN S, et al. Reduction of substituted nitrobezenes by Fe(Ⅱ) in aqueous mineral suspensions[J]. Environmental Science & Technology, 1995, 29(9):2396-2404.
[4] JEON B, DEMPSEY B, BURGOS W. Kinetics and mechanisms for reactions of Fe(Ⅱ) with iron(Ⅲ) oxides[J]. Environmental Science & Technology, 2003, 37(15):3309-3315.
[5] LUAN F, XIE L, SHENG J, et al. Reduction of nitrobenzene by steel convert slag with Fe(Ⅱ) system:The role of calcium in steel slag[J]. Journal of Hazardous Materials, 2012, 217-218(6):416-421.
[6] SCHULTZ C, GRUNDL T. pH dependence on reduction rate of 4-Cl-nitrobenzene by Fe(Ⅱ)/montmorillonite systems[J]. Environmental Science & Technology, 2000, 34(17):3641-3648.
[7] DANIELSEN K M, HAYES K F. pH dependence of carbon tetra-chloride reductive dechlorination by magnetite[J]. Environmental Science & Technology, 2004, 38(18):4745-4752.
[8] LEHMANN J, JOSEPH S. Biochar for environmental management science and technology[M]. London:Earthscan, 2009.
[9] SANDER M, HOFSTETTER T, Gorski C. Electrochemical analyses of redox-active iron minerals:A review of nonmediated and mediated approaches[J]. Environmental Science & Technology, 2015, 49(10):5862-5878.
[10] XU Y, HE Y, FENG X, et al. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(Ⅲ) reduction by an iron-reducing bacterium Clostridium beijerinckii Z[J]. Science of the Total Environment, 2014, 473-474(3):215-223.
[11] XU W, PIGNATELLO J, MITCH W. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13):7129-7136.
[12] OH S, SON J, CHIU P. Biochar-mediated reductive transformation of nitroherbicides and explosives[J]. Environmental Toxicology and Chemistry, 2013, 32(3):501-508.
[13] YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, DOI:10.1038/srep16221.
[14] NICOLE B, TOBLE R, THOMAS B, et al. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions[J]. Environmental Science & Technology, 2007, 41(22):7765-7772.
[15] CHUN Y, SHENG G, CHOU T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655.
[16] YANG Y, SHENG G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environmental Science & Technology, 2003, 37(16):3635-3639.
[17] ENDERS A, HANLE K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 2012, 114(3):644-653.
[18] RAVEENDRAN K, GANESH A, KHILAR K. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12):1812-1822.
[19] ZHANG P, SUN HW, YU L,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars:Impact of structuralproperties of biochars[J]. Journal of Hazardous Materials, 2013, 244-245(3):217-224.
[20] BALDOCK J, SMERNIK K. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood[J]. Organic Geochemistry, 2002, 22(9):1093-1109.
[21] CHEN B, JOHNSON E, CHEFETZ B. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:the role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16):6138-6146.
[22] KEILUWEIT M, NICO P, JOHNSON M, et al. Dynamicmolecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
[23] PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology, 2004, 36(8):1734-1741.