[1] NET S, SEMPÉRÉ R, DELMONT A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 2015, 49(7):4019-4035.
[2] DEBLONDE T, COSSU-LEGUILLE C, HARTEMANN P. Emerging pollutants in wastewater:A review of the literature[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6):442-448.
[3] ABDEL DAIEM M M, RIVERA-UTRILLA J, OCAMPO-PÉREZ R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies-A review[J]. Journal of Environmental Management, 2012, 109:164-178.
[4] 李锦,张占恩,陈鑫,等. 超声提取-分散液相微萃取-气相色谱质谱法测定大气PM2.5中15种邻苯二甲酸酯[J]. 环境化学, 2017, 36(1):183-189. LI J, ZHANG Z E, CHEN X, et al. Determination of fifteen phthalate esters in air particulate matter(PM2.5) by ultrasonic extraction-dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2017, 36(1):183-189(in Chinese).
[5] 于云江,叶昊,杨彦,等. 太湖流域(苏南地区)经口介质中邻苯二甲酸酯的生物有效性及人体暴露评估[J]. 环境化学, 2014, 33(2):194-205. YU Y J, YE H, YANG Y, et al. The bioaccessibility and exposure assessment of PAEs via oralmedia in Taihu Lake Basin of south Jiangsu Province[J]. Environmental Chemistry, 2014, 33(2):194-205(in Chinese).
[6] PÉREZ-ALBALADEJO E, FERNANDES D, LACORTE S, et al. Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells[J]. Toxicology in Vitro, 2017, 38:41-48.
[7] 王昱文,柴淼,曾甯,等. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 2016, 35(2):364-372. WANG Y W, CHAI M, ZENG N, et al. Contamination and health risk of phthalate esters in soils from a typical waste plastic recycling area[J]. Environmental Chemistry, 2016, 35(2):364-372(in Chinese).
[8] CHEN J, QUAN X, YAZHI Z, et al. Quantitative structure-property relationship studies on n-octanol/water partitioning coefficients of PCDD/Fs[J]. Chemosphere, 2001, 44(6):1369-1374.
[9]
[10] 郑晓英,周玉文,王俊安. 污泥中邻苯二甲酸酯生物降解性与化学结构的相关性[J]. 工业用水与废水, 2006,37(5):13-16. ZHENG X Y, ZHOU Y W, WANG J A, et al. Relativity between biodegradability and chemical structure of phthalic acid esters in sludge[J]. Industrial Water & Wastewater, 2006, 37(5):13-16(in Chinese).
[11] 马燕红,丁红艳,马丽,等. 邻苯二甲酸酯类化合物的定量结构-色谱保留关系[J]. 食品科学, 2012, 33(24):253-256. MA Y H, DING H Y, MA L, et al. A quantitative structure-retention relationship study for prediction of GC retention times of phthalate esters[J]. Food Science, 2012, 33(24):253-256(in Chinese).
[12] 马丽,丁红艳,薛少宗,等. 邻苯二甲酸酯类增塑剂QSRR研究及在白酒包装材料中的应用[J]. 食品科学, 2013, 34(8):220-223. MA L, DING H Y, XUE S Z, et al. Determination and application of phthalic acid esters in liquor packaging[J]. Food Science, 2013, 34(8):220-223(in Chinese).
[13] 隆兴兴,牛军峰,史姝琼. 邻苯二甲酸酯类化合物正辛醇-水分配系数的QSPR研究[J]. 环境科学, 2006, 27(11):2318-2322. LONG X X, NIU J F, SHI S Q. Research on quantitative structure-property relationships for n-octanol/water partition coefficients of phthalic acid esters[J]. Environmental Science, 2006, 27(11):2318-2322(in Chinese).
[14] YANG F, WANG M, WANG Z. Sorption behavior of 17 phthalic acid esters on three soils:Effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study[J]. Chemosphere, 2013, 93(1):82-89.
[15] YANG Z, LUO S, WEI Z, et al. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase:A single-descriptor based QSAR and DFT study[J]. Environmental Pollution, 2016, 211:157-164.
[16] 秦良,罗斯,高树梅,等. 零价铁降解氯代有机污染物的QSPR研究[J]. 环境化学, 2009, 28(3):400-403. QIN L, LUO S, GAO S M, et al. The QSPR investigation of the degradation of chlorinated contamination by zero-valent iron[J]. Environmental Chemistry, 2009, 28(3):400-403(in Chinese).
[17] YANG F, QU R, WANG M, et al. Experimental and QSPR study of sorption properties of polychlorinated diphenyl sulfides (PCDPSs) in Yangtze River plain soil[J]. Geoderma, 2013, 193-194:140-148.
[18] KARELSON M, LOBANOV V S, KATRITZKY A R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews, 1996, 96:1027-1043.
[19] XIAO R, YE T, WEI Z, et al. Quantitative structure-activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical[J]. Environmental Science & Technology, 2015, 49(22):13394-13402.
[20] SUDHAKARAN S, AMY G L. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification[J]. Water Research, 2013, 47(3):1111-1122.
[21] SUDHAKARAN S, CALVIN J, AMY G L. QSAR models for the removal of organic micropollutants in four different river water matrices[J]. Chemosphere, 2012, 87:144-150.
[22] GRAMATICA P, SANGION A. A Historical excursus on the statistical validation parameters for QSAR models:A clarification concerning metrics and terminology[J]. Journal of Chemical Information and Modeling, 2016, 56(6):1127-1131.
[23] YE T, WEI Z, SPINNEY R, et al. Quantitative structure-activity relationship for the apparent rate constants of aromatic contaminants oxidized by ferrate (Ⅵ)[J]. Chemical Engineering Journal, 2017, 317:258-266.
[24] MA G, YUAN Q, YU H, et al. Development and evaluation of predictive model for bovine serum albumin-water partition coefficients of neutral organic chemicals[J]. Ecotoxicology and Environmental Safety, 2017, 138:92-97.