[1] |
TANABE S. Temporal trends of brominated flame retardants in coastal waters of Japan and South China:Retrospective monitoring study using archived samples from es-Bank, Ehime University, Japan[J]. Marine Pollution Bulletin, 2008, 57(6):267-274.
|
[2] |
李永东, 云霞, 那广水, 等. 环境中六溴环十二烷的研究进展[J]. 环境与健康杂志, 2010, 27(10):933-936.
LI Y D,YUN X, NA G Y, et al. Progress in research on the hexabromocyclododecane in environment[J].Journal of Envirnment and Health, 2010, 27(10):933-939(in Chinese).
|
[3] |
SON M H, KIM J, SHIN E S, et al. Diastereoisomer-and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates[J]. Journal of Hazardous Materials, 2015, 300:114-120.
|
[4] |
LAW R J, COVACI A, HARRAD S, et al. Levels and trends of PBDEs and HBCDs in the global environment:Status at the end of 2012[J]. Environment International, 2014, 65:147-158.
|
[5] |
VORKAMP K, BOSSI R, RIGÉT F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota[J]. Environmental Pollution, 2014, 196:284-291.
|
[6] |
ZENG Y H, LUO X J, ZHENG X B, et al. Species-specific bioaccumulation of halogenated organic pollutants and their metabolites in fish serum from an e-waste site, South China[J]. Archives of Environmental Contamination & Toxicology, 2014, 67(3):348-357.
|
[7] |
SELLSTRÖM U, KIERKEGAARD A, WIT C D, et al. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish River[J]. Environmental Toxicology & Chemistry, 1998, 17(6):1065-1072.
|
[8] |
SINDIKU O, BABAYEMI J, OSIBANJO O, et al. Polybrominated diphenyl ethers listed as stockholm convention POPs, other brominated flame retardants and heavy metals in e-waste polymers in Nigeria[J]. Environmental Science and Pollution Research, 2015, 22(19):14489-14501.
|
[9] |
DU M, LIN L, YAN C, et al. Diastereoisomer-and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio)[J]. Environ Sci Technol, 2012, 46(20):11040-11046.
|
[10] |
ZHANG H, PAN L, TAO Y, et al. Identification and expression of differentially expressed genes in clam venerupis philippinarum in response to environmental pollutant hexabromocyclododecane (HBCD)[J]. Journal of Experimental Marine Biology & Ecology, 2013, 445(3):166-173.
|
[11] |
KOIKE E, YANAGISAWA R, TAKIGAMI H, et al. Brominated flame retardants stimulate mouse immune cells in vitro[J]. J Appl Toxicol, 2013, 33(12):1451-1459.
|
[12] |
HINKSON N C, WHALEN M M. Hexabromocyclododecane decreases tumor-cell-binding capacity and cell-surface protein expression of human natural killer cells[J]. J Appl Toxicol, 2010, 30(4):302-309.
|
[13] |
VAN DER VEN L T M, VERHOEF A, VAN DE KUIL T, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in wistar rats[J]. Toxicological Sciences, 2006, 94(2):281-292.
|
[14] |
CANTÓN R F, PEIJNENBURG A A, HOOGENBOOM R L, et al. Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats[J]. Toxicol Appl Pharmacol, 2008, 231(2):267-272.
|
[15] |
YAMADA-OKABE T, SAKAI H, KASHIMA Y, et al. Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4'-diiodobiphenyl (DIB), and nitrofen (NIP)[J]. Toxicology Letters, 2005, 155(1):127-133.
|
[16] |
YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet[J]. Environmental Health Perspectives, 2014, 122(3):277-283.
|
[17] |
AL-MOUSA F, MICHELANGELI F. The sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) is the likely molecular target for the acute toxicity of the brominated flame retardant hexabromocyclododecane (HBCD)[J]. Chem Biol Interact, 2014, 207:1-6.
|
[18] |
AL-MOUSA F, MICHELANGELI F. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells[J]. PLOS ONE, 2012, 7(4):e33059.
|
[19] |
MARIUSSEN E, FONNUM F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles[J]. Neurochemistry International, 2003, 43(4-5):533-542.
|
[20] |
SAEGUSA Y, FUJIMOTO H, WOO G H, et al. Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats[J]. Archives of Toxicology, 2012, 86(9):1431-1442.
|
[21] |
IBHAZEHIEBO K, IWASAKI T, SHIMOKAWA N, et al. 1,2,5,6,9,10-alphaHexabromocyclododecane (HBCD) impairs thyroid hormone-induced dendrite arborization of Purkinje cells and suppresses thyroid hormone receptor-mediated transcription[J]. Cerebellum, 2011, 10(1):22-31.
|
[22] |
IBHAZEHIEBO K, IWASAKI T, XU M, et al. Brain-derived neurotrophic factor (BDNF) ameliorates the suppression of thyroid hormone-induced granule cell neurite extension by hexabromocyclododecane (HBCD)[J]. Neuroscience Letters, 2011, 493(1-2):1-7.
|
[23] |
FERNIE K J, MARTEINSON S C, BIRD D M, et al. Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant[J]. Environ Toxicol Chem, 2011, 30(11):2570-2575.
|
[24] |
MARTEINSON S C, KIMMINS S, LETCHER R J, et al. Diet exposure to technical hexabromocyclododecane (HBCD) affects testes and circulating testosterone and thyroxine levels in American kestrels (Falco sparverius)[J]. Environ Res, 2011, 111(8):1116-1123.
|
[25] |
王晓敏, 朱丽岩, 陈学超,等. 六溴环十二烷对拟长腹剑水蚤的急性毒性和生殖发育毒性效应[J]. 中国海洋大学学报:自然科学版, 2017, 47(1):82-88.
WANG X M,ZHU L Y,CHEN X C,et al. Toxic effects of HBCD on the acute toxicity,development andreproduction of oithona similes[J].Periodical of Ocean University of China,2017,47(1):82-88(in Chinese).
|
[26] |
DENG J, YU L, LIU C, et al. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos[J]. Aquatic Toxicology, 2009, 93(1):29-36.
|
[27] |
MEIJER L, WEISS J, VAN V M, et al. Serum concentrations of neutral and phenolic organohalogens in pregnant women and some of their infants in The Netherlands[J]. Environmental Science & Technology, 2008, 42(9):3428-3433.
|
[28] |
NYHOLM J R, NORMAN A, NORRGREN L, et al. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio)[J]. Chemosphere, 2008, 73(2):203-208.
|
[29] |
JOHNSON P I, STAPLETON H M, MUKHERJEE B, et al. Associations between brominated flame retardants in house dust and hormone levels in men[J]. Sci Total Environ, 2013, 445-446:177-184.
|
[30] |
DOROSH A, DĚD L, ELZEINOVÁ F, et al. Assessing oestrogenic effects of brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on MCF-7 cells[J]. Folia Biologica, 2011, 57(1):35-39.
|
[31] |
李鹏, 杨从巧, 金军,等生产源区人血清中六溴环十二烷水平与甲状腺激素相关性研究[J]. 环境科学, 2014, 35(10):3970-3976.
LI P, YANG C Q, JIN J, et al. Correlations between HBCD and thyroid hormone concentrations in human serum from production source area[J]. Environment Science, 2014,35(10):3970-3976(in Chinese).
|
[32] |
EGGESBO M, THOMSEN C, JORGENSEN J V, et al. Associations between brominated flame retardants in human milk and thyroid-stimulating hormone (TSH) in neonates[J]. Environ Res, 2011, 111(6):737-743.
|
[33] |
WANG F, ZHANG H, GENG N, et al. New insights into the cytotoxic mechanism of hexabromocyclododecane from a metabolomic approach[J]. Environ Sci Technol, 2016, 50(6):3145-3153.
|
[34] |
ZOU W, CHEN C, ZHONG Y, et al. PI3K/Akt pathway mediates Nrf2/ARE activation in human L02 hepatocytes exposed to low-concentration HBCDs[J]. Environ Sci Technol, 2013, 47(21):12434-12440.
|
[35] |
PALACE V P, PLESKACH K, HALLDORSON T, et al. Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers[J]. Environmental Science & Technology, 2008, 42(6):1967-1972.
|
[36] |
HONG H, SHEN R, LIU W, et al. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma[J]. Mar Pollut Bull, 2015, 101(1):110-118.
|
[37] |
HAMERS T, KAMSTRA J H, SONNEVELD E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants[J]. Toxicol Sci, 2006, 92(1):157-173.
|
[38] |
ZHANG X, YANG F, XU C, et al. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell[J]. Toxicology in Vitro, 2008, 22(6):1520-1527.
|
[39] |
TOMY G T, PLESKACH K, OSWALD T, et al. Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian Arctic marine food web[J]. Environmental Science & Technology, 2008, 42(10):3634-3639.
|
[40] |
WU J P, GUAN Y T, ZHANG Y, et al. Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web[J]. Environmental Science & Technology, 2010, 44(14):5490-5495.
|
[41] |
BARGHI M, SHIN E S, SON M H, et al. Hexabromocyclododecane (HBCD) in the Korean food basket and estimation of dietary exposure[J]. Environ Pollut, 2016, 213:268-277.
|
[42] |
LI H, MO L, YU Z, et al. Levels, isomer profiles and chiral signatures of particle-bound hexabromocyclododecanes in ambient air around Shanghai, China[J]. Environ Pollut, 2012, 165:140-146.
|
[43] |
SHI Z, JIAO Y, HU Y, et al. Levels of tetrabromobisphenol A, hexabromocyclododecanes and polybrominated diphenyl ethers in human milk from the general population in Beijing, China[J]. Sci Total Environ, 2013, 452-453:10-18.
|
[44] |
HE M J, LUO X J, YU L H, et al. Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China:Vertical profile, phase partition, and bioaccumulation[J]. Environmental Pollution, 2013, 179(8):105-110.
|
[45] |
SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma:Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2010, 117(2):282-293.
|
[46] |
SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane alpha:Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2011, 121(2):234-244.
|
[47] |
SANDERS J M, KNUDSEN G A, BIRNBAUM L S. The fate of β-hexabromocyclododecane in female C57BL/6 mice[J]. Toxicological Sciences, 2013, 134(2):251-257.
|
[48] |
LI B, YAO T, SUN H, et al. Diastereomer-and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms[J]. Sci Total Environ, 2016, 542(Pt A):427-434.
|
[49] |
ZHANG Y, SUN H, LIU F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China:diastereomer-and enantiomer-specific profiles, biomagnification, and human exposure[J]. Chemosphere, 2013, 93(8):1561-1568.
|
[50] |
ZHANG Y W, WANG L, SUN H W, et al. Impacts of loach bioturbation on the selective bioaccumulation of HBCDD diastereoisomers and enantiomers by mirror carp in a microcosm[J]. Chemosphere, 2016, 163:471-479.
|
[51] |
ZHANG Y, RUAN Y, SUN H, et al. Hexabromocyclododecanes in surface sediments and a sediment core from rivers and harbor in the northern Chinese City of Tianjin[J]. Chemosphere, 2013, 90(5):1610-1616.
|
[52] |
JANÁK K, ADRIAN COVACI, STEFAN VOORSPOELS A, et al. Hexabromocyclododecane in marine species from the western scheldt estuary:diastereoisomer-and enantiomer-specific accumulation[J]. Environmental Science & Technology, 2005, 39(7):1987-1994.
|
[53] |
JANAK K, SELLSTROM U, JOHANSSON A K, et al. Enantiomer-specific accumulation of hexabromocyclododecanes in eggs of predatory birds[J]. Chemosphere, 2008, 73(1 Suppl):S193-200.
|
[54] |
HARRAD S, ABDALLAH M A, COVACI A. Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust[J]. Environ Int, 2009, 35(3):573-579.
|
[55] |
ESSLINGER S, BECKER R, JUNG C, et al. Temporal trend (1988-2008) of hexabromocyclododecane enantiomers in herring gull eggs from the German coastal region[J]. Chemosphere, 2011, 83(2):161-167.
|
[56] |
ESSLINGER S, BECKER R, MAUL R, et al. Hexabromocyclododecane enantiomers:Microsomal degradation and patterns of hydroxylated metabolites[J]. Environ Sci Technol, 2011, 45(9):3938-3944.
|
[57] |
DU M, LIN L, YAN C, et al. Enantiomer-specific bioaccumulation and depuration of hexabromocyclododecanes in zebrafish (Danio Rerio)[J]. Hazard Mater, 2013, 248-249:167-171.
|
[58] |
ZHANG Y, SUN H, ZHU H, et al. Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, spirulina subsalsa and scenedesmus obliquus[J]. Ecotoxicol Environ Saf, 2014, 104:136-142.
|
[59] |
ABDALLAH M A, UCHEA C, CHIPMAN J K, et al. Enantioselective biotransformation of hexabromocyclododecane by in vitro rat and trout hepatic sub-cellular fractions[J]. Environ Sci Technol, 2014, 48(5):2732-2740.
|
[60] |
WEISS J, WALLIN E, AXMON A, et al. Hydroxy-PCBs, PBDEs, and HBCDDs in serum from an elderly population of Swedish fishermen's wives and associations with bone density[J]. Environmental Science & Technology, 2006, 40(20):6282-6289.
|
[61] |
ROOSENS L, ABDALLAH M A E, HARRAD S, et al. Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum:Preliminary results[J]. Environmental Health Perspectives, 2009, 117(11):1707-1712.
|
[62] |
ABDALLAH M A E, HARRAD S. Tetrabromobisphenol A, hexabromocyclododecane and its degradation products in UK human milk:Relationship to external exposure[J]. Environment International, 2011, 37(2):443-448.
|
[63] |
CARIGNAN C C, ABDALLAH M A E, WU N, et al. Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from boston mothers[J]. Environmental Science & Technology, 2012, 46(21):12146-12153.
|
[64] |
ELJARRAT E, GUERRA P, MARTINEZ E, et al. Hexabromocyclododecane in human breast milk:Levels and enantiomeric patterns[J]. Environmental Science & Technology, 2009, 43(6):1940-1946.
|
[65] |
HUANG X, CHEN C, SHANG Y, et al. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells[J]. Chemosphere, 2016, 161:251-258.
|
[66] |
LI Y, ZHOU Q, WANG Y, et al. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants[J]. Chemosphere, 2011, 82(2):204-209.
|
[67] |
WU T, WANG S, HUANG H, et al. Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize[J]. J Agric Food Chem, 2012, 60(34):8528-8534.
|
[68] |
ZHU H, SUN H, ZHANG Y, et al. Uptake pathway, translocation, and isomerization of hexabromocyclododecane diastereoisomers by wheat in closed chambers[J]. Environ Sci Technol, 2016, 50(5):2652-2659.
|
[69] |
HUANG H, ZHANG S, LV J, et al. Experimental and theoretical evidence for diastereomer-and enantiomer-specific accumulation and biotransformation of HBCD in maize roots[J]. Environ Sci Technol, 2016, 50(22):12205-12213.
|
[70] |
MARTEINSON S C, EULAERS I, JASPERS V L, et al. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth[J]. Environ Pollut, 2017, 220(Pt A):441-451.
|
[71] |
LAW K, PALACE V P, HALLDORSON T, et al. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) I:Bioaccumulation parameters and evidence of bioisomerization[J]. Environmental Toxicology and Chemistry, 2006, 25(7):1757-1761.
|
[72] |
ESSLINGER S, BECKER R, MUELLER-BELECKE A, et al. HBCD Stereoisomer pattern in mirror carps following dietary exposure to pure gamma-HBCD enantiomers[J]. Journal of Agricultural and Food Chemistry, 2010, 58(17):9705-9710.
|
[73] |
ZHENG X, ERRATICO C, ABDALLAH M A E, et al. In vitro metabolism of BDE-47, BDE-99, and alpha-, beta-, gamma-HBCD isomers by chicken liver microsomes[J]. Environmental Research, 2015, 143:221-228.
|
[74] |
ZHENG X, ERRATICO C, LUO X, et al. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes:Implications of cats as sentinel species to monitor human exposure to environmental pollutants[J]. Chemosphere, 2016, 151:30-36.
|
[75] |
ZEGERS B N, METS A, VAN BOMMEL R, et al. Levels of hexabromocyclododecane in harbor porpoises and common dolphins from western European seas, with evidence for stereoisomer-specific biotransformation by cytochrome P450[J]. Environmental Science & Technology, 2005, 39(7):2095-2100.
|
[76] |
BRANDSMA S H, VEN L T M V D, BOER J D, et al. Identification of hydroxylated metabolites of hexabromocyclododecane in wildlife and 28-days exposed wistar rats[J]. Environmental Science & Technology, 2009, 43(15):6058-6063.
|
[77] |
HAKK H, SZABO D T, HUWE J, et al. Novel and distinct metabolites identified following a single oral dose of α-or γ-hexabromocyclododecane in mice[J]. Environmental Science & Technology, 2012, 46(24):13494-13503.
|
[78] |
DOMINGUEZ-ROMERO E, CARIOU R, OMER E, et al. Tissue distribution and transfer to eggs of ingested alpha-hexabromocyclododecane (alpha-HBCDD) in Laying Hens (Gallus domesticus)[J]. J Agric Food Chem, 2016, 64(10):2112-2119.
|
[79] |
ZHANG Y, SUN H, RUAN Y. Enantiomer-specific accumulation, depuration, metabolization and isomerization of hexabromocyclododecane (HBCD) diastereomers in mirror carp from water[J]. Journal of Hazardous Materials, 2014, 264(10):8-15.
|
[80] |
HAKK H. Comparative metabolism studies of hexabromocyclododecane (HBCD) diastereomers in male rats following a single oral dose[J]. Environ Sci Technol, 2016, 50(1):89-96.
|
[81] |
KOPPEN R, BECKER R, JUNG C, et al. On the thermally induced isomerisation of hexabromocyclododecane stereoisomers[J]. Chemosphere, 2008, 71(4):656-662.
|