[1] |
CHEN H H, ZHANG H P, YAN Y. Gradient porous Co-Cu-Mn mixed oxides modified ZSM-5 membranes as high efficiency catalyst for the catalytic oxidation of isopropanol[J]. Chemical Engineering Science, 2014, 111:313-323.
|
[2] |
李永峰, 刘祖超, 麦荣坚. Pd基无涂层整体式催化剂上甲苯催化燃烧净化研究[J]. 燃料化学学报, 2011, 39(9):712-716.
LI Y F, LIU Z C, MAI R J. Study on catalytic combustion of toluene over Pd-based uncoated monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9):712-716(in Chinese).
|
[3] |
孙忠. 钙钛矿催化剂催化燃烧VOCs的活性和抗氯性研究[D]. 杭州:浙江工业大学, 2010. SUN Z. Study on activity and chlorine resistance of VOCs catalyzed by perovskite catalyst[D]. Hangzhou:Zhejiang University of Technology, 2010(in Chinese).
|
[4] |
HERNáNDEZA W Y, CENTENOA M A, ROMERO-SARRIAA F, et al. Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen[J]. Catalysis Today, 2010, 157:160-165.
|
[5] |
SANTOS V P, PEREIRA M F R, ORFAO J J M, et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Applied Catalysis B-Environmental, 2010, 99(1-2):353-363.
|
[6] |
WANG R H, LI J H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures[J]. Environmental Science & Technology, 2010, 44(11):4282-4287.
|
[7] |
HOU J T, LIU L L, LI Y Z, et al. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation[J]. Environment Science Technology, 2013, 47:13730-13736.
|
[8] |
KINGONDU C K, OPEMBE N, CHEN C H, et al. Manganese oxide octahedral molecular sieves (OMS-2) multiple framework substitutions:a new route to OMS-2 particle size and morphology control[J]. Advanced Functional Materials, 2011, 21(2):312-323.
|
[9] |
CHEN X, SHEN Y F, SUIB S L, et al. Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants[J]. Chemistry of Materials, 2002, 14(2):940-948.
|
[10] |
SUN M, YU L, YE F, et al. Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether[J]. Chemical Engineering Journal, 2013, 220:320-327.
|
[11] |
赵海霞, 叶青, 张玉, 等. 氧化锰八面体分子筛负载Cu催化剂催化氧化性能研究[J]. 环境污染与防治, 2014, 36(4):33-37.
ZHAO H X, YE Q, ZHANG Y, et al. Study on catalytic oxidation of Cu catalyst supported on manganese oxide octahedral molecular sieves[J]. Environmental Pollution and Prevention, 2014, 36(4):33-37(in Chinese).
|
[12] |
LIU J, MAKWANA V, CAI J, et al. Effect of alkali metal and ammonium cation templates on nanofibrous cryptomelane-type manganese oxide octahedral molecular sieves(OMS-2)[J]. Journal of Physical Chemistry B, 2003, 107:9185-9194.
|
[13] |
HOU J T, LI Y Z, LIU L L, et al. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods[J]. Journal of Material S Chemistry A, 2013, 1:6736-6741.
|
[14] |
XIA G G, YIN Y G, WILLIS W S, et al. Efficient stable catalysts for low temperature carbon monoxide oxidation[J]. Journal of Catalysis, 1999, 185(1):91-105.
|
[15] |
LIANG S H, BULGAN F T G, ZONG R L, et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. Journal of Physical Chemistry C, 2008, 112(14):5307-5315.
|