[1] |
GUO Y P, ZENG Z Q, LI Y L, et al. Catalytic oxidation of 4-chlorophenol on in-situ sulfur-doped activated carbon with sulfate radicals[J]. Separation and Purification Technology, 2017, 179(5):257-264.
|
[2] |
贺京哲, 周世伟, 吕家珑, 等. 不同氯酚催化氧化降解反应动力学[J]. 环境化学, 2017, 36(5):1122-1130.
HE J Z, ZHOU S W, LY J L, et al. Catalytic oxidation kinetics of different chlorinated phenols[J]. Environmental Chemistry,2017, 36(5):1122-1130(in Chinese).
|
[3] |
封帆, 高迎新, 张昱, 等. Fenton氧化4-氯酚降解机制研究[J]. 环境化学, 2011, 30(11):1889-1893.
FENG F, GAO Y X, ZHANG Y, et al. Decomposition mechanisms of 4-chlorophenol by fenton oxidation[J]. Environmental Chemistry,2011, 30(11):1889-1893(in Chinese).
|
[4] |
FENG X, LI W T, FANG L P, et al. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction[J]. Journal of Hazardous Materials, 2016, 308(5):11-20.
|
[5] |
WANG X B, HUANG S S, ZHU L H, et al. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds[J]. Carbon 2014, 69(4):101-112.
|
[6] |
LI J M, MENG X G, HU C W, et al. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan[J]. Bioresource Technology, 2009, 100(3):1168-1173.
|
[7] |
JACOME M V, BUITRON G, ANDRADE I M, et al. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenolas the sole carbon source[J]. Journal of Hazardous Materials, 2016, 313(8):112-121.
|
[8] |
HUANG Z D, WEN M, WU Q H, et al. Fabrication of Cu@AgCl nanocables for their enhanced activity toward the catalytic degradation of 4-chlorophenol[J]. Journal of Colloid and Interface Science, 2015, 460(12):230-236.
|
[9] |
WANG J, XIA Y, ZHAO H Y, et al. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 206(6):406-416.
|
[10] |
祁文智, 王凡, 王辉, 等. Pd-Fe/石墨烯多功能催化阴极降解4-氯酚机制研究[J]. 环境科学, 2015, 36(6):2169-2174.
QI W Z, WANG F, WANG H, et al. Degradation mechanism of 4-chlorophenol on a Pd-Fe/graphene multifunctional catalytic cathode[J]. Environmental Science, 2015, 36(6):2169-2174(in Chinese).
|
[11] |
YAN J C, LEI M, ZHU L H, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2-3):1398-1404.
|
[12] |
WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlori-nated ethenes by heat-activated persulfate:Kinetics and products[J]. Environmental Science & Technology, 2007, 41(3):1010-1015.
|
[13] |
LAU T K, WEI C, GRAHAM N J D. The aqueous degradation of butylated hydrox-yanisole by UV/S2O82-:Study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007, 41(2):613-619.
|
[14] |
LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223.
|
[15] |
ZHU L L, AI Z H, HO W K, et al. Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange[J]. Separation and Purification Technology, 2013, 108(4):159-165.
|
[16] |
RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene:The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42):7752-7777.
|
[17] |
ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon:A review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145.
|
[18] |
XU J, WANG L, ZHU Y F. Decontamination of bisphenol A from aqueous solution by graphene adsorption[J]. Langmuir, 2012, 28(22):8418-8425.
|
[19] |
HUMMER W, OFFEMAN R. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1340.
|
[20] |
LONG J L, XIE X Q, XU J, et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J]. ACS Catalysis, 2012, 2(4):622-631.
|
[21] |
LIN Z Y, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Advanced Energy Materials, 2012, 2(7):884-888.
|
[22] |
REN P G, YAN D X, JI X, et al. Temperature dependence of graphene oxide reduced by hydrazine hydrate[J]. Nanotechnology, 2011, 22(5):055705.
|
[23] |
LIN Z Y, SONG M, DING Y, et al. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction[J]. Physical chemistry chemical physics, 2012, 14(10):3381-3387.
|
[24] |
SUN H Q, WANG Y X, LIU S Z, et al. Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation[J]. Chemical Communications, 2013, 49(85):9914-9916.
|
[25] |
YANG S Y, YANG X, SHAO X T, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials, 2011, 186(1):659-666.
|
[26] |
HUANG Z F, BAO H W, YAO Y Y, et al. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Applied Catalysis B:Environmental, 2014, 154-155(7-8):36-43.
|