[1] |
COZAR A, ECHEVARRIA F, GONZALEZ-GORDILLO J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences, 2014, 111(28):10239-10244.
|
[2] |
United nations environment programme[R]. Emerging Issues in our Global Environment, 2012.
|
[3] |
IMHOF H K, IVLEVA N P, SCHMID J, et al. Contamination of beach sediments of a subalpine lake with microplastic particles[J]. Current Biology, 2013, 23(19):867-868.
|
[4] |
ERIKSSON C, BURTON H. Origins and biological accumulation of small plastic particles in fur seals from macquarie island[J]. Ambio, 2003, 32(6):380-384.
|
[5] |
FREE C M, JENSEN O P, MASON S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake[J]. Marine Pollution Bulletin, 2014, 85(1):156-163.
|
[6] |
BARNES D K, GALGANI F, THOMPSON R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Biological Sciences, 2009, 364(1526):1985-1998.
|
[7] |
BARNES D K, WALTERS A, GONCALVES L. Macroplastics at sea around antarctica[J]. Marine Environmental Research, 2010, 70(2):250-252.
|
[8] |
KLAINE S J, KOELMANS A A, HORNE N, et al. Paradigms to assess the environmental impact of manufactured nanomaterials[J]. Environmental Toxicology and Chemistry, 2012, 31(1):3-14.
|
[9] |
JAMBECK J R, GEYER R, WILCOX C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771.
|
[10] |
YANG D, SHI H, LI L, et al. Microplastic pollution in table salts from china[J]. Environmental Science & Technology, 2015, 49(22):13622-13627.
|
[11] |
ESPERANZA H L, HENNIE G, HARM G, et al. Microplastics in the terrestrial ecosystem:Implications for lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5):2685-2691.
|
[12] |
RODRIGUEZ-SEIJO A, LOURENCO J, ROCHA-SANTOS, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouche'[J]. Environmental Pollution, 2016, 220:495-503.
|
[13] |
STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550:690-705.
|
[14] |
FENDALL L S, SEWELL M A. Contributing to marine pollution by washing your face:Microplastics in facial cleansers[J]. Marine Pollution Bulletin, 2009, 58(8):1225-1228.
|
[15] |
ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the laurentian great lakes[J]. Marine Pollution Bulletin, 2013, 77(1-2):177-182.
|
[16] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):836-838.
|
[17] |
ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge[J]. Environmental Pollution, 2005, 138(2):201-211.
|
[18] |
RAMOS L, BERENSTEIN G, HUGHES E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523:74-81.
|
[19] |
DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?[J]. Marine Pollution Bulletin. 2016, 104(1-2):290-293.
|
[20] |
BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science & Technology, 2011, 45(21):9175-9179.
|
[21] |
COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 62(16):2588-2597.
|
[22] |
孙承君, 蒋凤华, 李景喜, 等. 海洋中微塑料的来源、分布及生态环境影响研究进展[J]. 海洋科学进展, 2016, 34(4):449-461.
SUN C J, JIANG F H, LI J X, et al. The research progress in source, distribution, ecological and environmental effects of marine microplastics[J]. Advances in Marine Science, 2016, 34(4):449-461(in Chinese).
|
[23] |
章海波, 周倩, 周阳, 等. 重视海岸及海洋微塑料污染加强防治科技监管研究工作[J]. 中国科学院院刊, 2016, 31(10):1182-1189.
ZHANG H B, ZHOU Q, ZHOU Y, et al. Raising concern about microplastic pollution in coastal and marine environment and strengthening scientific researches on pollution prevention and management[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1182-1189(in Chinese).
|
[24] |
VANCE M E, KUIKEN T, VEJERANO E P, et al. Nanotechnology in the real world:Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6:1769-1780.
|
[25] |
HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141.
|
[26] |
UNEP. Marine litter:An analytical review[R]. United Nations Environment Programme, 2005.
|
[27] |
LAMBERT S, SINCLAIR C, BOXALL A. Occurrence, degradation, and effect of polymer-based materials in the environment[M]. Springer International Publishing, 2014:1-53.
|
[28] |
IOVINO R, ZULLO R, RAO M A, et al. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions[J]. Polymer Degradation and Stability, 2008, 93(1):147-157.
|
[29] |
LUCAS N, BIENAIME C, BELLOY C, et al. Polymer biodegradation:Mechanisms and estimation techniques[J]. Chemosphere, 2008, 73(4):429-442.
|
[30] |
ARTHAM T, DOBLE M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience, 2008, 8(1):14-24.
|
[31] |
IVAR DO SUL J A, COSTA M F. The present and future of microplastic pollution in the marine environment[J]. Environmental Pollution, 2014, 185(4):352-364.
|
[32] |
VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue musselmytilus edulis l. After an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20):11327-11335.
|
[33] |
RⅡSGÅRD H U. Efficiency of particle retention and filtration rate in 6 species of northeast american bivalves[J]. Marine Ecology Progress Series, 1988, 45(3):217-223.
|
[34] |
BROWNE M A, DISSANAYAKE A, GALLOWAY T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, mytilus edulis (L.)[J]. Environmental Science & Technology, 2008, 42(13):5026-5031.
|
[35] |
VAN CAUWENBERGHE L, JANSSEN C R. Microplastics in bivalves cultured for human consumption[J]. Environmental Pollution, 2014, 193:65-70.
|
[36] |
EVAN WARD J, SHUMWAY S E. Separating the grain from the chaff:Particle selection in suspension- and deposit-feeding bivalves[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300(1-2):83-130.
|
[37] |
BRILLANT B, MACDONALD B. Postingestive selection in the sea scallop (placopecten magellanicus) on the basis of chemical properties of particles[J]. Marine Biology, 2002, 141(3):457-465.
|
[38] |
JEONG C B, KANG H M, LEE M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323.
|
[39] |
COLE M, LINDEQUE P K, FILEMAN E, et al. Microplastics alter the properties and sinking Rates of zooplankton faecal pellets[J]. Environmental Science & Technology, 2016, 50(6):3239-3246.
|
[40] |
JEONG C B, WON E J, KANG H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and P-JNK and P-P38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16):8849-8857.
|
[41] |
KETTNER M T, ROJAS-JIMENEZ K, OBERBECKMANN S, et al. Microplastics alter composition of fungal communities in aquatic ecosystems[J]. Environmental Microbiology, 2017,19(11),4447-4459.
|
[42] |
SUSSARELLU R, SUQUET M, THOMAS Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences, 2016, 113(9):2430-2435.
|
[43] |
CHEN Q Q, GUNDLACH M, YANG S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. The Science of the total Environment, 2017, 584:1022-1031.
|
[44] |
LONNSTEDT O M, EKLOV P. Environmentally relevant concentrations of microplastic particles influence larval fish ecology[J]. Science, 2016, 352(6290):1213-1216.
|
[45] |
MIZRAJI R, AHRENDT C, PEREZ-VENEGAS D, et al. Is the feeding type related with the content of microplastics in intertidal fish gut?[J]. Marine Pollution Bulletin, 2017, 116(1-2):498-500.
|
[46] |
FARRELL P, NELSON K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3.
|
[47] |
WATTS A J R, LEWIS C, GOODHEAD R M, et al. Uptake and retention of microplastics by the shore crab Carcinus maenas[J]. Environmental Science & Technology, 2014, 48(15):8823-8830.
|
[48] |
SETALA O, FLEMING-LEHTINEN V, LEHTINIEMI M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83.
|
[49] |
LUSHER A L, MCHUGH M, THOMPSON R C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel[J]. Marine Pollution Bulletin, 2013, 67(1-2):94-99.
|
[50] |
BHATTACHARYA P, LIN S J, TURNER J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis[J]. The Journal of Physical Chemistry C, 2010, 114(39):16556-16561.
|
[51] |
DELLA TORRE C, BERGAMI E, SALVATI A, et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos paracentrotus lividus[J]. Environmental Science & Technology, 2014, 48(20):12302-12311.
|
[52] |
WARD J E, KACH D J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves[J]. Marine Environmental Research, 2009, 68(3):137-142.
|
[53] |
WEGNER A, BESSELING E, FOEKEMA E M, et al. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.)[J]. Environmental Toxicology and Chemistry, 2012, 33(11):2490-2497.
|
[54] |
CEDERVALL T, HANSSON L A, LARD M, et al. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PloS one, 2012, 7(2):e32254.
|
[55] |
HUSSAIN N, JAITLEY V, FLORENCE A T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J]. Advanced Drug Delivery Reviews, 2001, 50(1-2):107-142.
|
[56] |
VOLKHEIMER G. Hematogenous dissemination of ingested polyvinyl-chloride particles[J]. Annals of the New York Academy of Sciences, 1975, 246(1):164-171.
|
[57] |
COLLARD F, GILBERT B, COMPERE P, et al. Microplastics in livers of European anchovies (Engraulis encrasicolus L.)[J]. Environmental Pollution, 2017, 229:1000-1005.
|
[58] |
CARR K E, SMYTH S H, MCCULLOUGH M T, et al. Morphological aspects of interactions between microparticles and mammalian cells:intestinal uptake and onward movement[J]. Progress in Histochemistry and Cytochemistry 2012, 46(4):185-252.
|
[59] |
SCHMIDT C, LAUTENSCHLAEGER C, COLLNOT E M, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa:A first in vivo study in human patients[J]. Journal of the Controlled Release Society, 2013, 165(2):139-145.
|
[60] |
YOO J W, DOSHI N, MITRAGOTRI S. Adaptive micro and nanoparticles:Temporal control over carrier properties to facilitate drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63:(14-15):1247-56.
|
[61] |
POWELL J J, THOREE V, PELE L C. Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract[J]. The British Journal of Nutrition, 2007, 98(1):59-63.
|
[62] |
HANDY R D, HENRY T B, SCOWN T M, et al. Manufactured nanoparticles:Their uptake and effects on fish-a mechanistic analysis[J]. Ecotoxicology, 2008, 17(5):396-409.
|
[63] |
LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060.
|
[64] |
DENG Y F, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7:46687.
|
[65] |
PEDA C, CACCAMO L, FOSSI M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256.
|
[66] |
BOUWMEESTER H, DEKKERS S, NOORDAM M Y, et al. Review of health safety aspects of nanotechnologies in food production[J]. Regulatory Toxicology and Pharmacology, 2009, 53(1):52-62.
|
[67] |
WALCZAK A P. Development of an integrated in vitro model for the prediction of oral bioavailability of nanoparticles[D]. Wageningen:Wageningen University, 2014.
|
[68] |
JANI P, HALBERT G W, LANGRIDGE J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa:Quantitation and particle size dependency[J]. Journal of Pharmacy and Pharmacology, 1990, 42(12):821-826.
|
[69] |
HILLERY A, JANI P, FLORENCE A. Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles[J]. Journal of Drug Targeting, 1994, 2(2):151-156.
|
[70] |
KULKARNI S A, FENG S S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery[J]. Pharmaceutical Research, 2013, 30(10):2512-2522.
|
[71] |
DES RIEUX A, FIEVEZ V, THÉATE I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by cells[J]. European Journal of Pharmaceutical Sciences, 2007, 30(5):380-391.
|
[72] |
WALCZAK A P, KRAMER E, HENDRIKSEN P J M, et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexit[J]. Nanotoxicology, 2015, 9(4):453-461.
|
[73] |
WALCZAK A P, KRAMER E H M, HENDRIKSEN P J M, et al. In vitro gastrointestinal digestion increases the translocation of polystryrene nanoparticles in an in vitro intestinal co-culture model[J]. Nanotoxicology, 2015, 9(7):886-894.
|
[74] |
LUNDQVIST M, STIGLER J, ELIA G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts[J]. Proceedings of the National Academy of Sciences of the United States of American, 2008, 105(38):14265-14270.
|
[75] |
MAHLER G J, ESCH M B, TAKO E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271.
|
[76] |
ROSSI G, BARNOUD J, MONTICELLI L. Polystyrene nanoparticles perturb lipid membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(1):241-246.
|
[77] |
SALVATI A, ABERG C, DOS SANTOS T, et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules:Toward models of uptake kinetics[J]. Nanomedicine, 2011, 7, (6):818-826.
|
[78] |
XIA T, KOVOCHICH M, LIONG M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008, 2(1):85-96.
|
[79] |
SHOSAKU K. Distribution of nanoparticles in the see-through medaka (oryzias latipes)[J]. Environmental Health Perspectives, 2006, 114(11):1697-1702.
|
[80] |
FORTE M, IACHETTA G, TUSSELLINO M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in vitro:An international journal published in association with BIBRA, 2016, 31:126-136.
|
[81] |
LIU Y X, LI W, LAO F, et al. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes[J]. Biomaterials, 2011, 32(32):8291-8303.
|
[82] |
BHATTACHARJEE S, ERSHOV D, ISLAM M A, et al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles[J]. Rsc Advance, 2014, 4(37):19321-19330.
|
[83] |
MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science & Technology, 2001, 35(2):318-324.
|
[84] |
GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers:Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13):7252-7259.
|
[85] |
GOUIN T, ROCHE N, LOHMANN R, et al. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic[J]. Environmental Science & Technology, 2011, 45(4):1466-1472.
|
[86] |
KOELMANS A A, BESSELING E, WEGNER A, et al. Plastic as a carrier of POPs to aquatic organisms:A model analysis[J]. Environmental Science & Technology, 2013, 47(14):7812-7820.
|
[87] |
RIETJENS I M C M, LOUISSE J, PUNT A.Tutorial on physiologically based kinetic modeling in molecular nutrition and food research[J]. Molecular Nutrition Food Research, 2011, 55(6):941-956.
|
[88] |
FOSSI M C, COPPOLA D, BAINI M, et al. Large filter feeding marine organisms as indicators of microplastic in the pelagic environment:the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus)[J]. Marine Environmental Research, 2014, 100:17-24.
|
[89] |
BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23):2388-2392.
|
[90] |
BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and pcb bioaccumulation by the Lugworm arenicola marina (L.)[J]. Environmental Science & Technology, 2013, 47(1):593-600.
|
[91] |
MICHAEL O G, ELLEN H, ROBERT C H. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended Soils[J]. Environmental Science & Technology, 2013, 47(23):13831-13839.
|
[92] |
DEVRIESE L I, DE WITTE B, VETHAAK A D, et al. Bioaccumulation of PCBs from microplastics in Norway lobster (Nephrops norvegicus):An experimental study[J]. Chemosphere, 2017, 186:10-16.
|
[93] |
CHUA E M, SHIMETA J, NUGEGODA D, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes Compressa[J]. Environmental Science & Technology, 2013, 48(14):8127-8134.
|
[94] |
MA Y, HUANG A, CAO S, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water[J]. Environmental Pollution, 2016, 219:166-173.
|
[95] |
TEUTEN E L, SAQUING J M, KNAPPE D R, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical transactions of the Royal Society of London, Series B, Biological sciences, 2009, 364(1526):2027-2045.
|
[96] |
LITHNER D, DAMBERG J, DAVE G, et al. Leachates from plastic consumer products-Screening for toxicity with Daphnia magna[J]. Chemosphere, 2009, 74(9):1195-1200.
|
[97] |
BEJGARN S, MACLEOD M, BOGDAL C, et al. Toxicity of leachate from weathering plastics:An exploratory screening study with Nitocra spinipes[J]. Chemosphere, 2015, 132:114-119.
|
[98] |
LI H X, GETZINGER G J, FERGUSON P L, et al. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle amphibalanus amphitrite[J]. Environmental Science & Technology, 2016, 50(2):924-931.
|
[99] |
GANDARA E S P P, NOBRE C R, RESAFFE P, et al. Leachate from microplastics impairs larval development in brown mussels[J]. Water Research, 2016, 106:364-370.
|
[100] |
HAMLIN H J, MARCIANO K, DOWNS C A. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani[J]. Chemosphere, 2015, 139:223-228.
|
[101] |
LITHNER D, NORDENSVAN I, DAVE G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna[J]. Environmental Science and Pollution Research International, 2012, 19(5):1763-1772.
|