[1] GUSTIN M S, BIESTER H, KIM C S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates[J]. Atmospheric Environment, 2002, 36(20):3241-3254.
[2] GUSTIN M S. Are mercury emissions from geologic sources significant? A status report[J]. Science of the Total Environment, 2003, 304(1-3):153-167.
[3] GUSTIN M S, AMOS H M, HUANG J, et al. Measuring and modeling mercury in the atmosphere:A critical review[J]. Atmospheric Chemistry & Physics, 2015, 15(10):5697-5713.
[4] AGNAN Y, LE D T, MOORE C W, et al. New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database[J]. Environmental Science & Technology, 2016, 50(2):507-524.
[5] SCHULZE E D. Plant Life forms and their carbon, water and nutrient relations[M]. Berlin Heidelberg:Springer, 1982:615-676.
[6] HANSON P J, LINDBERG S E, TABBERER T A, et al. Foliar exchange of mercury vapor:Evidence for a compensation point[J]. Water Air & Soil Pollution, 1995, 80(1-4):373-382.
[7] FU X W, ZHU W, ZHANG H, et al. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China[J]. Atmospheric Chemistry & Physics, 2016, 16(20):1-31.
[8] MAO Y, LI Y, RICHARDS J, et al. Investigating uptake and translocation of mercury species by sawgrass (Cladium jamaicense) using a stable isotope tracer technique[J]. Environmental Science & Technology, 2013, 47(17):9678-9684.
[9] CUI L W, FENG X B, LIN C J, et al. Accumulation and translocation of 198Hg in four crop species[J]. Environmental Toxicology & Chemistry, 2014, 33(2):334-340.
[10] GREGER M, WANG Y, NEUSCHVTZ C. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species[J]. Environmental Pollution, 2005, 134(2):201-208.
[11] STRICKMAN R J, MITCHELL C P. Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa:An enriched isotope tracer study[J]. Science of the Total Environment, 2017, 574:1415-1423.
[12] ASSAD M, PARELLE J, CAZAUX D, et al. Mercury uptake into poplar leaves[J]. Chemosphere, 2016, 146(3):1-7.
[13] 颜紫云,冯新斌,LIN CHE-JEN,等.高效稳定的单一汞同位素大气发生系统[J]. 地球与环境, 2014,42(3):413-418. YAN Z Y, FENG X B, LIN C J, et al. The controlled atmospheric system that can produce efficientstable and single mercury isotope[J]. Earth and Environment, 2014, 42(3):413-418(in Chinese).
[14] ECKLEY C S, GUSTIN M, LIN C J, et al. The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes[J]. Atmospheric Environment, 2010, 44(2):194-203.
[15] SLEMR F, BRUNKE E G, EBINGHAUS R, et al. Worldwide trend of atmospheric mercury since 1995[J]. Atmospheric Chemistry & Physics, 2011, 11(1):4779-4787.
[16] CHEN L G, LIU M, XU Z C, et al. Variation trends and influencing factors of total gaseous mercury inthe Pearl River Delta-A highly industrialised region in South China influenced by seasonal monsoons[J]. Atmospheric Environment, 2013, 77(7):757-766.
[17] 付学吾,冯新斌,张辉.贵阳市大气气态总汞:Lumex RA-915AM与Tekran2537A的对比观测[J]. 生态学杂志,2011,30(5):939-943. FU X W, FENG X B, ZHANG H. atmospheric total gasous mercury concentration in Guiyang measurements intercomparison with Lumex RA-915AM and Tekran 2537A[J]. Chinese Journal of Ecology, 2011, 30(5):939-943(in Chinese).
[18] RUTTER A P, SCHAUER J J, SHAFER M M, et al. Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment[J]. Atmospheric Environment, 2011, 45(4):848-855.
[19] HINTELMANN H, OGRINC N. Determination of stable mercury isotopes by ICP/MS and their application in environmental studies[M]. Washington DC:ACS Publications, 2002:321-338.
[20] MILLHOLLEN A G, OBRIST D, GUSTIN M S. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil[J]. Chemosphere, 2006, 65(5):889-897.
[21] STAMENKOVIC J, GUSTIN M S, JOHNSON D W, et al. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms[J]. Science of the Total Environment, 2008, 406(1-2):227-238.
[22] POISSANT L, PILOTE M, YUMVIHOZE E, et al. Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Québec, Canada[J]. Journal of Geophysical Research-Atmospheres, 2008, 113:D10307.
[23] STAMENKOVIC J, GUSTIN M S. Nonstomatal versus stomatal uptake of atmospheric mercury[J]. Environmental Science & Technology, 2009, 43(5):1367-1372.
[24] LUO Y, DUAN L, DRISCOLL C T, et al. Foliage/atmosphere exchange of mercury in a subtropical coniferous forest in south China[J]. Journal of Geophysical Research-Biogeosciences, 2016, 121(7):2006-2016.
[25] 赵曦,李娟,黄艺,等.珠三角某垃圾焚烧厂周边植物叶片汞含量空间格局及影响因素[J]. 生态毒理学报,2015,10(4):105-114. ZHAO X, LI J, HUANG Y, et al. Spatial pattern and influencing factors of mercury levels in leaves of plants surrounding a solid waste incinerator in the Pearl River Delta[J]. Asian Journal of Ecotoxicology, 2015, 10(4):105-114(in Chinese).
[26] 牛振川,张晓山,陈进生,等.植被在大气汞收支中作用的研究进展与展望[J]. 生态毒理学报,2014,9(5):843-849. NIU Z C, ZHANG X S, CHEN J S, et al. The role of vegetation in atmospheric mercury budgets:Progresses and perspectives[J]. Asian Journal of Ecotoxicology, 2014, 9(5):843-849(in Chinese).
[27] 刘婷,郑祥民,刘飞,等.上海市香樟树叶总汞含量时空分布及影响因素[J]. 环境化学,2017,36(3):486-495. LIU T, ZHENG X M, LIU F, et al. Seasonal and spatial distribution of mercury contents in camphora leaves and its influencing factors in Shanghai[J]. Environmental Chemistry, 2017, 36(3):486-495(in Chinese).
[28] WANG X, BAO Z D, LIN C J, et al. Assessment of global mercury deposition through litterfall[J]. Environmental Science & Technology, 2016, 50(16):8548-8557.
[29] OBRIST D, JOHNSON D W, LINDBERG S E, et al. Mercury distribution across 14 U.S. Forests. Part Ⅰ:Spatial patterns of concentrations in biomass, litter, and soils[J]. Environmental Science & Technology, 2011, 45(9):3974-3981.
[30] DU S H, FANG S C. Uptake of elemental mercury vapor by C3, and C4, species[J]. Environmental & Experimental Botany, 1982, 22(4):437-443.
[31] NIU Z C, ZHANG X, WANG Z, et al. Field controlled experiments of mercury accumulation in crops from air and soil[J]. Environmental Pollution, 2011, 159(10):2684-2689.
[32] DU S H, FANG S C. Catalase activity of C3, and C4, species and its relationship to mercury vapor uptake[J]. Environmental & Experimental Botany, 1983, 23(4):347-353.
[33] GRAYDON J A, ST LOUIS V L, LINDBERG S E, et al. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber[J]. Environmental Science & Technology, 2006, 40(15):4680-4688.
[34] LAACOURI A, NATER E A, KOLKA R K. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A.[J]. Environmental Science & Technology, 2013, 47(18):10462-10470.
[35] ZHANG H H, POISSANT L, XU X, et al. Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes[J]. Atmospheric Environment, 2005, 39(39):7481-7493.
[36] 陈剑,王章玮,张晓山,等.开顶式气室原位研究水稻汞富集对大气汞浓度升高的响应[J]. 环境科学, 2015, 36(8):2997-3003. CHEN J, WANG Z W, ZHANG X S, et al. Open-top chamber for in situ research on response of mercury enrichment in rice to the rising gaseous elemental mercury in the atmosphere[J]. Environmental Science, 2015, 36(8):2997-3003(in Chinese).