[1] |
YUAN J, GAPONIK N, EYCHMVLLER A. Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication[J]. Analytical Chemistry, 2012, 84(11):5047-5052.
|
[2] |
CHAI X L, CHANG X J, HU Z, et al. Solid phase extraction of trace Hg(Ⅱ) on silica gel modified with 2-(2-oxoethyl) hydrazine carbothioamide and determination by ICP-AES[J]. Talanta, 2010, 82(5):1791-1796.
|
[3] |
WU H, WANG X C, LIU B, et al. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2011, 66(1):74-80.
|
[4] |
王晋芬, 边超, 佟建华,等. 基于纳米金修饰的两种无汞型重金属微传感器的对比研究[J]. 分析化学, 2012, 40(12):1791-1796.
WANG J F, BIAN C, TONG J H, et al. Comparison of mercury-free microsensors based on gold nanoparticles for heavy metals detection[J]. Chinese Journal of Analytical Chemistry, 2012, 40(12):1791-1796(in Chinese).
|
[5] |
周建红. 纳米金属氧化物修饰电极的制备及其在环境分析中的应用[D]. 长沙:中南大学, 2011. ZHOU J H. Fabrication of modified electrodes and its application in environmental determination with nanostructured metal oxides[D]. Changsha:Central South University, 2011(in Chinese).
|
[6] |
ZHU X X, TONG J H, BIAN C, et al. The polypyrrole/multiwalled carbon nanotube modified Au microelectrode for sensitive electrochemical detection of trace levels of Pb2+[J]. Micromachines, 2017, 8(3):86.
|
[7] |
MARTINEZ A W, PHILLIPS S T, CARRILHO E, et al. Simple telemedicine for developing regions:Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis[J]. Analytical Chemistry, 2008, 80(10):3699-3707.
|
[8] |
LÓPEZ MARZO A M, PONS J, BLAKE D A, et al. All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters[J]. Analytical Chemistry, 2013, 85(7):3532-3538.
|
[9] |
FENG L, LI X, LI H, et al. Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions[J]. Analytica Chimica Acta, 2013, 780:74-80.
|
[10] |
CATE D M, DUNGCHAI W, CUNNINGHAM J C, et al. Simple, distance-based measurement for paper analytical devices[J]. Lab on A Chip, 2013, 13(12):2397-2404.
|
[11] |
JIANG D L, JI J, AN L, et al. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin)[J]. Biosensors & Bioelectronics, 2013, 50(24):150-156.
|
[12] |
FENG L, LI H, NIU L Y, et al. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions[J]. Talanta, 2013, 108(8):103-108.
|
[13] |
ABE K, KOTERA K, SUZUKI K, et al. Inkjet-printed paperfluidic immuno-chemical sensing device[J]. Analytical & Bioanalytical Chemistry, 2010, 398(2):885-893.
|
[14] |
SWERIN A, MIRA I. Ink-jettable paper-based sensor for charged macromolecules and surfactants[J]. Sensors & Actuators B Chemical, 2014, 195(5):389-395.
|
[15] |
WANG S W, GE L, ZHANG Y, et al. Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy[J]. Lab on A Chip, 2012, 12(21):4489-4498.
|