[1] 朱孝强,黄亚继,沈凯,等.ZrO2掺杂的V2O5/TiO2催化剂表征及催化还原NOx[J].环境化学,2012,31(4):443-449. ZHU X Q, HUANG Y J, SHEN K, et al. Characteritarion of ZrO2-doped V2O5/TiO2 catalyst and its catalytic reduction of NOx by NH3[J]. Environmental Chemistry, 2012,31(4):443-449(in Chinese).
[2] 马双忱,金鑫,孙云雪,等.SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电,2010,39(8):12-17. MA S C, JIN X, SUN Y X, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitration process and control thereof[J]. Thermal power generation, 2010, 39(8):12-17(in Chinese).
[3] 杨加强,梅毅,王驰,等.湿法烟气脱硝技术现状及发展[J].化工进展,2017,36(2):695-704. YANG J Q, MEI Y, WANG C, et al. Current status and trends on wet flue gas denitration technology[J]. Chemical industry and Engineering process, 2017, 36(2):695-704(in Chinese).
[4] 白敏菂,冷宏,张启岳,等.高级氧化技术研究现状及其发展趋势[J].科技导报,2011,29(35):74-79. BAI M D, LENG H, ZHANG Q Y, et al. Application, experimentation, and development tendency of advanced oxidation processes[J]. Science &Technology Review, 2011, 29(35):74-79(in Chinese).
[5] COLLINS J G.. Polit scale study for control of industrial boiler nitrogen oxide emissions using hydrogen peroxide treatment coupled with wet scrubbing-system design[D]. America:University of Central Florida, 1999.
[6] MICHELLE M C, Cooper C D, Dietz J D, et al. Pilot-scale evaluation of H2O2 injection to control NOx emissions[J]. Journal of Environmental Engineering. 2001. 127(4):329-336.
[7] COOPER C D, CHRISTIAN A C, LUCAS P, et al. Investigation of ultraviolet light-enhanced H2O2 oxidation of NOx emissions[J].Journal of Environmental Engineering. 2002, 128(1):68-72.
[8] HAYWOOD J M, COOPER C D. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases[J]. Journal of the Air & Waste Management Association, 1998, 48(3):238-246.
[9] DING J, ZHONG Q, ZHANG S L, et al. Simultaneous removal of NOx and SO2 from coal-fired fue gas by catalytic oxidation-removal process with H2O2[J].Chemical Engineering Journal, 2014, 243(5):176-182.
[10] HUANG X M, DING J, ZHONG Q. Catalutic decomposition of H2O2 over Fe-based catalysts for simultaneousremoval of NOx and SO2[J].Applied Surface Science, 2015, 326:66-72.
[11] DING J, ZHONG Q, ZHANG S L, et al. Size-and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOx and SO2 removal with hydrogen peroxide[J]. Journal of Hazardous Materials, 2015, 283:633-642.
[12] DING J, ZHONG Q, ZHANG S L. Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SO2 removal effect of calcination temperature[J]. Journal of Molecular Catalysis A Chemical, 2014, 393(18):222-231.
[13] HIROKI A, LAVERNE J A. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces[J]. Journal of Physical Chemistry B, 2005, 109(8):3364-3370.
[14] LOUSADA C M, JONSSON M. Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2[J]. Journal of Physical Chemistry C, 2010, 114(25):11202-11208.
[15] HAO R L, ZHAO Y. Macrokinetics of NO oxidation by vaporized H2O2 association with ultraviolet light[J]. Energy & Fuels, 2016, 30(3):1328-1338.
[16] 岳林海,水淼,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报理学版,2000,27(1):69-74. YUE L H, SHUI M, XU Z D, et al. The A-R transformation and photocatalytic acticities of mixed TiO2 rare earth oxides[J]. Journal of Zhejiang University, 2000, 27(1):69-74(in Chinese).
[17] XU W Q, YU Y B, ZHANG C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communication, 2008, 9(6):1453-1457.
[18] YANG M, MATS J. Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2[J]. Journal of Molecular Catalysis A Chemical, 2015, 400:49-55.
[19] ZAMANSKY V M, LOC H, PETER M M, et al. Oxidation of NO to NO2 by hydrogen peroxide and its mixtures with methanol in naturalgas and coal combustion gases[J]. Combustion Science and Technology, 1996, 120(1-6):255-272.
[20] BAI M D, ZHANG Z T, Bai M D. Simultaneous desulfurization and denitration of flue gas by OH radicals produced from O2+ and water vapor in a duct.[J]. Environmental Science & Technology, 2012, 46(18):10161-10168.
[21] YANG M, JONSSON M. Evaluation of the O2 and pH effects on probes for surface bound hydroxyl radicals[J]. Journal of Physical Chemistry C, 2014, 118(15):7971-7979.
[22] ZHU H, QIN Z, SHAN W, et al. Pd/CeO2 -TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents[J]. Journal of Catalysis, 2004, 225(2):267-277.
[23] HE H, DAIH X, AU C T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions[J]. Catalysis Today, 2004, 90(3-4):245-254.
[24] LARSSON P O, ANDERSSON A. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on Titania and Ceria modified Titania[J]. Journal of Catalysis, 1998, 179(1):72-89.
[25] SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3, catalyst for CO2, reforming of CH4:Role of surface oxygen species on H2, production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22):14435-14446.
[26] LEE Y N, LAGO R M, FIERRO J L G, et al. Hydrogen peroxide decomposition over Ln1-XAXMnO3, (Ln=La or Nd and A=K or Sr) perovskites[J]. Applied Catalysis A:General, 2001, 215(1-2):245-256.
[27] MIN K, PARK E D, JI M K, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
[28] JARRIGE J, VERVISCH P. Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2 -based catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(1-2):74-82.
[29] 叶苗苗, 陈忠林, 沈吉敏,等. 臭氧提高纳米TiO2光催化活性的ESR分析[J]. 影像科学与光化学, 2008, 26(6):460-467. YE M M, CHENG Z L, SHEN J M, et al. ESR analysis of the photocatalytic activity of ozone increasing nano-TiO2[J]. Imaging Science and Photochemistry, 2008, 26(6):460-467(in Chinese).