[1] |
YANG Y, DOUDRICK K, BI X, et al. Characterization of food-grade titanium dioxide:The presence of nanosized particles[J]. Environmental Science & Technology, 2014, 48(11):6391-6400.
|
[2] |
WEIR A, WESTERHOFF P, FABRICIUS L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environmental Science & Technology, 2012, 46(4):2242-2250.
|
[3] |
MACNICOLL A, KELLY M, AKSOY H, et al. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake[J]. Journal of Nanoparticle Research, 2015, 17(2):1-20.
|
[4] |
LEFEBVRE D E, VENEMA K, GOMBAU L, et al. Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices[J]. Nanotoxicology, 2015, 9(4):523-542.
|
[5] |
ESFANJANI A F, JAFARI S M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds[J]. Colloids & Surfaces B Biointerfaces, 2016, 146:532-543.
|
[6] |
CRUZ-ROMERO M C, MURPHY T, MORRIS M, et al. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications[J]. Food Control, 2013, 34(2):393-397.
|
[7] |
FAUST J J, DOUDRICK K, YANG Y, et al. Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation[J]. Cell Biology & Toxicology, 2014, 30(3):169-188.
|
[8] |
SRINIVASU B Y, MITRA G, MURALIDHARAN M, et al. Beneficiary effect of nanosizing ferric pyrophosphate as food fortificant in iron deficiency anemia:Evaluation of bioavailability, toxicity and plasma biomarker[J]. RSC Advances, 2015, 5(76):61678-61687.
|
[9] |
HUANG J, LIANG C, ZHANG X. Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils[J]. Environmental Pollution, 2017, 225:201-210.
|
[10] |
RODRIGUES S M, TRINDADE T, DUARTE A C, et al. A framework to measure the availability of engineered nanoparticles in soils:Trends in soil tests and analytical tools[J]. Trends in Analytical Chemistry, 2016, 75:129-140.
|
[11] |
HUANG Y, ZHAO L, KELLER A A. Interactions, transformations and bioavailability of nano-copper exposed to root exudates[J]. Environmental Science & Technolog, 2017, 51(17):9774-9783.
|
[12] |
PENG C, XU C, LIU Q, et al. Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants[J]. Environmental Science & Technology, 2017, 51(9):4907-4917.
|
[13] |
BECARO A A, PUTI F C, CORREA D S, et al. Polyethylene films containing silver nanoparticles for applications in food packaging:Characterization of physico-chemical and anti-microbial properties[J]. Journal of Nanoscience & Nanotechnology, 2015, 15(3):2148-2156.
|
[14] |
TENTSCHERT J, JUNGNICKEL H, REICHARDT P, et al. Identification of nano clay in composite polymers[J]. Surface & Interface Analysis, 2015, 46(S1):334-336.
|
[15] |
SARAPULOVA O, SHERSTIUK V, SHVALAGIN V, et al. Photonics and nanophotonics and information and communication technologies in modern food packaging[J]. Nanoscale Research Letters, 2015, 10(1):1-8.
|
[16] |
LI W, LI L, CAO Y, et al. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple[J]. Nanomaterials. 2017, 7(8):207.doi:10.3390/nano7080207.
|
[17] |
PRIOLO M A, GAMBOA D, GRUNLAN J C, et al. Transparent clay-polymer nano brick wall assemblies with tailorable oxygen barrier[J]. ACS Applied Materials & Interfaces, 2010, 2(1):312-320.
|
[18] |
KANMANI P, RHIM J W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films[J]. Food Chemistry, 2014, 148(2):162-169.
|
[19] |
CHEN X X, CHENG B, YANG Y X, et al. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum[J]. Small, 2013, 9(9-10):1765-1774.
|
[20] |
BACHLER G, VON G N, HUNGERBUHLER K, et al. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles[J]. Nanotoxicology, 2015, 9(3):373-380.
|
[21] |
AL-RAWI M, DIABATÉ S, WEISS C, et al. Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells[J]. Archives of Toxicology, 2011, 85(7):813-826.
|
[22] |
PETERS R J, RIVERA Z H, VAN B G, et al. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat[J]. Analytical & Bioanalytical Chemistry, 2014, 406(16):3875-3885.
|
[23] |
FAUST J J, DOUDRICK K, YANG Y, et al. A facile method for separating and enriching nano and submicron particles from titanium dioxide found in food and pharmaceutical products[J]. PLoS One, 2016, 11(10):e164712.doi:10.1371/journal.pone.0164712.
|
[24] |
LESHER E K, RANVILLE J F, HONEYMAN B D, et al. Analysis of pH dependent uranium(Ⅵ) sorption to nanoparticulate hematite by flow field-flow fractionation-inductively coupled plasma mass spectrometry[J]. Environmental Science & Technology, 2009, 43(14):5403-5409.
|
[25] |
GIDDINGS J C. Field-flow fractionation:Analysis of macromolecular, colloidal, and particulate materials[J]. Science, 1993, 260(5113):1456-1465.
|
[26] |
GIMBERT L J, HAMON R E, CASEY P S, et al. Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation[J]. Environmental Chemistry, 2007, 4(1):8-10.
|
[27] |
MITRANO D M, LESHER E K, BEDNAR A, et al. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry[J]. Environmental Toxicology & Chemistry, 2012, 31(1):115-121.
|
[28] |
CAO Q, YUAN K, YU J, et al. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine[J]. Journal of Colloid & Interface Science, 2017, 490:23-28.
|
[29] |
LÍPEZ-LORENTE A I, SIMONET B M, VALCÁRCEL M, et al. Rapid analysis of gold nanoparticles in liver and river water samples[J]. Analyst, 2012, 137(15):3528-3534.
|
[30] |
PYELL U. Characterization of nanoparticles by capillary electromigration separation techniques[J]. Electrophoresis, 2010, 31(5):814-831.
|
[31] |
ARSLAN Z, ATES M, MCDUFFY W, et al. Probing metabolic stability of CdSe nanoparticles:alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles[J]. Journal of Hazardous Materials, 2011, 192(1):192-199.
|
[32] |
LEE J H, JIN B H, BAHK Y K, et al. Microfluidic centrifuge of nano-particles using rotating flow in a microchamber[J]. Sensors & Actuators B Chemical, 2008, 132(2):525-530.
|
[33] |
YAN N, ZHU Z, JIN L, et al. Quantitative characterization of gold nanoparticles by coupling thin layer chromatography with laser ablation inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2015, 87(12):6079-6087.
|
[34] |
HELSPER J P, PETERS R J, BROUWER L, et al. Characterisation and quantification of liposome-type nanoparticles in a beverage matrix using hydrodynamic chromatography and MALDI-TOF mass spectrometry[J]. Analytical & Bioanalytical Chemistry, 2013, 405(4):1181-1189.
|
[35] |
LIU L, HE B, LIU Q, et al. Identification and accurate size characterization of nanoparticles in complex media[J]. Angewandte Chemie, 2014, 53(52):14476-14479.
|
[36] |
BEDRE M D, BASAVARAJA S, RAGHUNANDAN D, et al. Preparation and characterization of Polyaniline-Co3O4 nanocomposites via interfacial polymerization[J]. American Journal of Materials Science, 2012, 52(2):149-154.
|
[37] |
BOYD R D, CUENAT A. New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images[J]. Journal of Nanoparticle Research, 2011, 13(1):105-113.
|
[38] |
RAZ S R, LEONTARIDOU M, BREMER M G E G, et al. Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment[J]. Analytical & Bioanalytical Chemistry, 2012, 403(10):2843-2850.
|
[39] |
LOESCHNER K, NAVRATILOVA J, WAGNER S, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS[J]. Analytical & Bioanalytical Chemistry, 2013, 405(25):8185-8195.
|
[40] |
BOUWMEESTER H, POORTMAN J, PETERS R J, et al. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model[J]. ACS Nano, 2011, 5(5):4091-4103.
|
[41] |
VILA L, MARCOS R, HERNÁNDEZ A, et al. Long-term effects of silver nanoparticles in Caco-2 cells[J]. Nanotoxicology, 2017, 11(6):771-780.
|
[42] |
KIM M K, LEE J A, JO M R, et al. Cytotoxicity, uptake behaviors, and oral absorption of food grade calcium carbonate nanomaterials[J]. Nanomaterials, 2015, 5(4):1938-1954.
|
[43] |
PROQUIN H, RODRÍGUEZIBARRA C, MOONEN C G J, et al. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity:Contribution of micro and nano-sized fractions[J]. Mutagenesis, 2017, 32(1):139-149.
|
[44] |
PATIL G, KHAN M I, PATEL D K, et al. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro-and nano-particles of dolomite on human lung epithelial cells A(549)[J]. Environmental Toxicology & Pharmacology, 2012, 34(2):436-445.
|
[45] |
JAYARAM D T, RUNA S, KEMP M L, et al. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells[J]. Nanoscale, 2017, 9(22):7595-7601.
|
[46] |
LIU H, YANG H, LIN B, et al. Toxic effect comparison of three typical sterilization nanoparticles on oxidative stress and immune inflammation response in rats[J]. Toxicology Research, 2015, 4(2):486-493.
|
[47] |
WU N, HONG F, ZHOU Y, et al. Exacerbation of innate immune response in mouse primary cultured Sertoli cells caused by nanoparticulate TiO2 involves the TAM/TLR3 signal pathway[J]. Journal of Biomedical Materials Research Part A, 2017, 105(1):1-7.
|
[48] |
SARAVANAN P, JAYAMOORTHY K, KUMAR S A, et al. Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance[J]. Journal of Science Advanced Materials & Devices, 2016, 1(3):367-378.
|
[49] |
LIU J, WANG Z, LIU F D, et al. Chemical transformations of nanosilver in biological environments[J]. ACS Nano, 2012, 6(11):9887-9899.
|
[50] |
ROGERS K R, BRADHAM K, TOLAYMAT T, et al. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid[J]. Science of the Total Environment, 2012, 420:334-339.
|
[51] |
REMYA N S, SYAMA S, SABAREESWARAN A, et al. Investigation of chronic toxicity of hydroxyapatite nanoparticles administered orally for one year in wistar rats[J]. Materials Science & Engineering C, 2017, 76:518-527.
|
[52] |
SAHU S C, NJOROGE J, BRYCE S M, et al. Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells[J]. Journal of Applied Toxicology, 2016, 36(4):521-531.
|
[53] |
WANG Z, CHEN J, HUANG L, et al. Integrated fuzzy concentration addition-independent action (IFCA-IA) model outperforms two-stage prediction (TSP) for predicting mixture toxicity[J]. Chemosphere, 2009, 74(5):735-740.
|
[54] |
WANG Z, WANG S, PEIJNENBURG W J, et al. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13.
|
[55] |
LI M, LUO Z, YAN Y, et al. Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in daphnia magna[J]. Environmental Science & Technology, 2016, 50(17):9636-9643.
|
[56] |
CTISTIS G, SCHÖN P, BAKKER W, et al. PCDDs, PCDFs, and PCBs co-occurrence in TiO2 nanoparticles[J]. Environmental Science & Pollution Research International, 2015, 23(5):4837-4843.
|
[57] |
ELNEKEETY A A, ELKADY A A, ABDELWAHHAB K G, et al. Reduction of individual or combined toxicity of fumonisin B1 and zearalenone via dietary inclusion of organo-modified nano-montmorillonite in rats[J]. Environmental Science and Pollution Research, 2017, 24(25):20770-20783.
|
[58] |
FINE J H, BONDY G S, COADY L, et al. Immunomodulation by gastrointestinal carbon black nanoparticle exposure in ovalbumin T cell receptor transgenic mice[J]. Nanotoxicology, 2016, 10(10):1422-1430.
|
[59] |
MCCRACKEN C, ZANE A, KNIGHT D A, et al. Minimal intestinal epithelial cell toxicity in response to short-and long-term food-relevant inorganic nanoparticle exposure[J]. Chemical Research in Toxicology, 2013, 26(10):1514-1525.
|
[60] |
AURÉLIE, ETIENNEMESMIN, LUCIE, et al. Relevance and challenges in modeling human gastric and small intestinal digestion[J]. Trends in Biotechnology, 2012, 30(11):591-600.
|
[61] |
DEBNATH K, SHEKHAR S, KUMAR V, et al. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(31):20309-20318.
|
[62] |
SERVIN A D, MORALES M I, CASTILLO-Michel H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit:A possible pathway of TiO2 nanoparticle transfer from soil into the food chain[J]. Environmental Science & Technology, 2013, 47(20):11592-11598.
|
[63] |
STEINHÄUSER K G, SAYRE P G. Reliability of methods and data for regulatory assessment of nanomaterial risks[J]. Nanoimpact, 2017, 7:66-74.
|