[1] KOTAS J, STASICKA Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 2000, 107:263-283.
[2] FUJISHIMA A, ZHANG X, TRYK D. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63:515-582.
[3] 杨静, 崔世海, 陈慧慧, 等.磁载纳米TiO2复合材料光催化材料的研究进展[J].环境化学, 2014, 33(11):1930-1935. YANG J, CUI S H, CHEN H H, et al. Research progress on magnetic TiO2 composite nano-photocatalysts[J]. Environmental Chemistry, 2014, 33(11):1930-1935(in Chinese).
[4] PAOLA A D, GARCIA L E, MARCHI G, et al. A survey of photocatalytic materials for environmental remediation[J].Journal of Hazardous Materials, 2012,211:3-29.
[5] CHEN C, MA W, ZHAO J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Review, 2010, 39:4206-4213.
[6] 熊世威, 方艳芬, 黄应平, 等. BiPO4纳米棒制备及光催化降解罗丹明B[J]. 环境化学, 2013, 32(10):1856-1862. XIONG S W, FANG Y F,HUANG Y P, et al. BiPO4 nanorods preparation and photocatalytic degradation of rhodamine B[J]. Environmental Chemistry, 2013, 32(10):1856-1862(in Chinese).
[7] SHAN L, WANG G, LIU L, et al. Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl(001) core-shell heterojunction[J]. Journal of Molecular Catalysis A:Chemical, 2015, 406:145-151.
[8] CHENG H, HUANG B, DAI Y. Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6:2009-2026.
[9] HAN S, LI J, YANG K, LIN J. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal[J]. Chinese Journal of Catalysis, 2015, 36:2119-2126.
[10] WANG Q, JIAO D, LIAN J, et al. Preparation of efficient visible-light-driven BiOBr/Bi2O3 heterojunction composite with enhanced photocatalytic activities[J]. Journal of Alloys and Compounds, 2015, 649:474-482.
[11] CHU S, YANG C, NIU C, et al. Synthesis of Bi-Bi2O3/C hybrid nanocomposite as a high performance photocatalyst[J]. Materials Letters, 2014, 136:366-370.
[12] 卢远刚, 杨迎春, 叶芝祥, 等. 氮掺杂Bi2O3光催化剂的制备及其可见光催化性能[J]. 无机材料学报2012, 27(6):643-648. LU Y G, YANG Y C, YE Z X, et al. Preparation of N-doped Bi2O3 photocatalyst and its visible light catalytic performance[J]. Inorganic Materials, 2012, 27(6):643-648(in Chinese).
[13] SUDRAJATH. Template-free, simple fabrication of C/N-doped Bi2O3 nanospheres with appreciable photocatalytic activity under visible light[J]. Superlattices and Microstructures, 2017, 109:229-239.
[14] WANG Q, ZHU N X, LIU E Q, et al. Highly enhanced photoelectrocatalytic properties by α-Fe2O3 modified NF-TiO2 pyramids with dominant (101) facets[J]. Electrochimica Acta, 2016, 216:266-275.
[15] 马骕骦, 潘兆琪, 陈伟锐, 等.铈负载SBA-15分子筛催化臭氧氧化水中环丙沙星[J]. 环境化学, 2016, 35(5):910-916. MA X J; PAN Z Q; CHEN W R, et al. Catalytic ozonation of ciprofloxacin over cerium supported on SBA-15 mesoporous molecular sieves[J]. Environmental Chemistry, 2016, 35(5):910-916(in Chinese).
[16] WANG Q, SHI X D, LIU E Q, et al. Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2016, 317:8-16.
[17] ZHANG L, WANG W, YANG J, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Applied Catalysis A, 2006, 308:105-110.
[18] WANG Q, SHI X D, XU J J, et al. Highly enhanced photocatalytic reduction of Cr(Ⅵ) on AgI/TiO2 under visible light irradiation:Influence of calcination temperature[J]. Journal of Hazardous Materials, 2016, 307:213-220.