[1] |
JIA XY, GONG D R, WANG J N, et al. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination[J]. Talanta, 2016, 160(1):437-443.
|
[2] |
SINGH R K. Lectotypification of four species of Indian Trachyspermum (Apiaceae)[J]. Telopea Journal of Plant Systematics, 2015, 18:247-253.
|
[3] |
DENG S B, YU G, XIE S H, et al. Enhanced adsorption of arsenate on the aminated fibers:Sorption behavior and uptake mechanism[J]. Langmuir, 2008, 24(19):10961-10967.
|
[4] |
杨世迎, 陈友媛, 胥慧真,等.过硫酸盐活化高级氧化新技术[J].化学进展,2008,20(9):1433-1438.
YANG S Y, CHEN Y Y, XU H Z, et al. A novel advanced oxidation technology based on activated persulfate[J]. Progress in Chemistry, 2008, 20(09):1433-1438(in Chinese).
|
[5] |
YANG S Y, LI L, XIAO T, et al. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation[J]. Applied Surface Science, 2016, 163(383):142-150.
|
[6] |
MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere 2016, 2016(151):178-188.
|
[7] |
YANG S, WANG P, YANG X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants:Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179(1-3):552-558.
|
[8] |
王兆慧, 宋文静, 马万红, 等.铁配合物的环境光化学及其参与的环境化学过程[J]. 化学进展, 2012, 24(Z1):423-432.
WANG Z H, SONG W J, MA W H, et al. Environmental photochemistry of iron complexes and their involvement in environmental chemical processes[J]. Progress in Chemistry, 2012, 24(Z1):423-432(in Chinese).
|
[9] |
刘可. KMnO4与FeSO4联用去除水中磷的效能与机理[D].哈尔滨:哈尔滨工业大学, 2010. LIU K. Efficiency and mechanism of phosphate removal by combined use of KMnO4 and FeSO4.[D]. Harbin:Harbin Institute of Technology,2010
(in Chinese).
|
[10] |
李欢旋, 万金泉, 马邕文, 等.不同粒径零价铁活化过硫酸钠氧化降解酸性橙7的影响及动力学研究[J].环境科学,2014,35(9):3422-3429.
LI H X, WAN J Q, MA Y W, et al. Effects of particle size of zero-valent iron on the reactivity of activating persulfate and kinetics for the degradation of acid orange 7[J]. Environmental Science, 2014, 35(9):3422-3429(in Chinese).
|
[11] |
LAAT J D, LE G T, LEGUBE B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2[J]. Chemosphere, 2004, 55(5):715-723.
|
[12] |
SIEDLECKA E M,WIECKOWSKA A, STEPNOWSKI P, Influence of inorganic ions on MTBE degradation by Fenton's reagent[J].Journal of Hazardous Materials, 2007, 147(1-2):497-502.
|
[13] |
OH S Y, KIM H W, PARK J M, et al. Oxidation of polyvinyl alcohol by persulfate activated with heat Fe2+, and zero-valentiron[J]. Journal of Hazardous Materials, 2009, 168(1):346-351.
|
[14] |
SONG K, ZHOU X, LIU Y Q, et al. Improving dewaterability of anaerobically digested sludge by combination of persulfate and zero valent iron[J]. Chemical Engineering Journal, 2016, 295:436-442.
|
[15] |
OLHA S F, AMY L T, RICHARD J W. Mechanism of Base Activation of Persulfate[J]. Environmental Science & Technology,2010, 44(16):6423-6428.
|
[16] |
GUO X J, YANG Z, DONG H Y, et al. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water[J]. Water Research, 2015, 88:671-680.
|
[17] |
LACKOVIC J A, NIKOLAIDIS N P, DOBBS G M. Inorganic arsenic removal by zero-valent iron[J]. Environmental Engineering Science, 2000, 17(1):29-39.
|
[18] |
FARRELL J, WANG J P, O'Day A P, et al. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media[J]. Environmental Science & Technology, 2001, 35(10):2026-2032.
|
[19] |
MANNING BA, HUNT ML, Amrhein C, et al. Arsenic(Ⅲ) and arsenic(V) reactions with zero valent iron corrosion products[J]. Environmental Science & Technology, 2002, 36(24):5455-5461.
|
[20] |
SU C, PULS RW. Significance of iron (Ⅱ, Ⅲ) hydroxycarbonate green rust in arsenic remediation using zero valent iron in laboratory column tests[J]. Environmental Science & Technology, 2004, 38(19):5224-5231.
|
[21] |
SU C, PULS R W. Arsenate and arsenite removal by zero valent iron:Kinetics, redox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(1):1487-1492.
|
[22] |
WANG J W, BEJAN A D, Bunce N J. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide[J]. Environmental Science & Technology, 2003, 37(19):4500-4506.
|
[23] |
李启厚, 李莉, 刘志宏, 等.碱性体系下As(Ⅲ)的催化氧化及其机理研究[J]. 矿冶工程, 2009, 29(6):64-67.
LI Q H, LI L, LIU Z H, et al. Investigation into catalytic oxidation and its mechanism of As(Ⅲ) in alka line system[J]. Mining and Metallurgical Engineering, 2009, 29(6):64-67(in Chinese).
|
[24] |
DENG W N, ZHOU Z M, YANG Y L, et al. Remediation of arsenic(Ⅲ) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions[J]. Water Science & Technology, 2018, 77(2):375-386.
|
[25] |
WOLFGANG Driehaus, REINER Seith, MARTIN Jekel. Oxidation of arsenate (Ⅲ) with manganese oxides in water treatment[J]. Water. Research., 1995, 29(1):297-305.
|
[26] |
姜利. 高锰酸钾预氧化-新生态铁联用去除As的效能及机理[D].哈尔滨:哈尔滨工业大学, 2008. JIANG L. Effective and mechanism of arsenite removal by potassium permanganate peroxidation and Fe(Ⅲ) formed in-situ[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese).
|
[27] |
BODY G E, ADAMSON A W, MYERS L S. The exchange adsorption of ions from aqueous solutions by organic zeolites. Ⅱ. kinetics1[J]. Journal of the American Chemical Society, 1947, 69(11):2836-2848
|
[28] |
WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1936, 89(2):31-60.
|
[29] |
RUDZINSKI W, PLAZINSKI W. Theoretical description of the kinetics of solute adsorption at heterogeneous solid/solution interfaces:On the possibility of distinguishing between the diffusional and the surface reaction kinetics models[J]. Applied Surface Science, 2007, 253(13):5827-5840.
|
[30] |
CHATTERJEE A, SCHIEWER S. Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns[J]. Chemical Engineering Journal, 2014, 244(15):105-116.
|
[31] |
SIMONIN J P, BOUTE J. Intraparticle diffusion-adsorption model to describe liquid/solid adsorption kinetics[J]. Chemical Engineering Journal, 2016, 15(1):161-173.
|
[32] |
MAFU L D, MAMBA B B, MSAGATI T A M. Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples[J]. Journal of Saudi Chemical Society, 2016, 20(5):596-605.
|
[33] |
SU F C, ZHOU H J, ZHANG Y X, et al. Three-dimensional honeycomb-like structured zero-valent iron/chitosan composite foams for effective removal of inorganic arsenic in water[J]. Journal of Colloid and Interface Science, 2016, 478:421-429.
|
[34] |
SONG S, LOPEZ V A, Hernandez D J, et al. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J]. Water Research, 2006, 40(2):364-372.
|
[35] |
WANG P, CHUNG T S. Recent advances in membrane distillation processes:Membrane development, configuration design and application exploring[J]. Journal of Membrane Science, 2015, 474:39-56.
|
[36] |
ALKORTA I, HERNANDEZA J, GARBISU C. Plants against the global epidemic of arsenic poisoning[J].Environment International, 2004, 30(7):949-951.
|